. Space Industry and Business News .




.
CHIP TECH
Superlattice Cameras Add More 'Color' to Night Vision
by Staff Writers
Evanston IL (SPX) Oct 24, 2011

Center for Quantum Devices graduate student Edward Huang holds a lighter and a narrow-band filter centered at 11.3 m. The flame can only be seen when imaged with the band-pass detectors sensitive up to 13 m (right) but not in the ones with shorter detection wavelength up to 9.5 m (left).

Recent breakthroughs have enabled scientists from the Northwestern University's Center for Quantum Devices to build cameras that can see more than one optical waveband or "color" in the dark.

The semiconducting material used in the cameras - called type-II superlattices - can be tuned to absorb a wide range of infrared wavelengths, and now, a number of distinct infrared bands at the same time.

The idea of capturing light simultaneously at different wavelengths isn't new. Digital cameras in the visible spectrum are commonly equipped with detectors that sense red, green, and blue light to replicate a vast majority of colors perceived by the human eye.

Multi-color detection in the infrared spectrum, however, offers unique functionalities beyond color representation. The resonant frequencies of compounds can often be found in this spectral range, which means that chemical spectroscopy can be relayed in images real-time.

"When coupled with image-processing algorithms performed on multiple wavebands, the amount of information rendered in a particular scene is tremendous," said Manijeh Razeghi, Walter P. Murphy Professor in Electrical Engineering and Computer Science at the McCormick School of Engineering and director of the Center for Quantum Devices.

Razeghi's group engineered the detection energies on the cameras to be extremely narrow, close to one-tenth of an electron volt, in what is known as the long-wave infrared window. Creating the cameras was difficult, however, because the light-absorbing layers are prone to parasitic effects.

Furthermore, the detectors were designed to be stacked one on top of another, which provided spatially coincident pixel registration but added significantly to the growth and fabrication challenges.

Nevertheless, a dual-band long-wave infrared 320-by-256 sized type-II superlattice camera was demonstrated for the first time in the world, the results of which were published in the July 2011 issue of Optics Letters.

Such infrared photon cameras based on another material called HgCdTe were used in disaster relief in March 2011 when a catastrophic tsunami damaged Japans' nuclear reactors.

These cameras provided accurate temperature information about the reactors from unmanned aerial vehicles, providing officials the information they needed to orchestrate cooling efforts and prevent nuclear meltdown.

HgCdTe, however, is considered to be an expensive technology in the long-wave infrared due to its poor spectral uniformity and therefore yield - areas in which type-II superlattices may prove more efficient.

"Type-II superlattices can be grown uniformly even at very long-wavelengths because its energy gap is determined by the alternating InAs and GaSb quantum well thicknesses, rather than its composition as is the case with HgCdTe," Razeghi said.

The high-resolution multi-band type-II superlattice camera also offered very impressive performances, requiring only 0.5 milliseconds to capture a frame with temperature sensitivities as good as 0.015C. "The high-performance, multi-functionality, and low cost offered by type-II superlattices truly make it an attractive infrared technology," she added.

Related Links
McCormick School of Engineering and Applied Science
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
A new scheme for photonic quantum computing
Vienna, Austria (SPX) Oct 17, 2011
The concepts of quantum technology promise to achieve more powerful information processing than is possible with even the best possible classical computers. To actually build efficient quantum computers remains a significant challenge in practice. A new scheme termed "coherent photon conversion", could potentially overcome all of the currently unresolved problems for optical implementation ... read more


CHIP TECH
Microring device could aid in future optical technologies

Netflix loses 810,000 US subscribers

Study: No negative impact from e-readers

Greenpeace criticises Japan radiation screening

CHIP TECH
First MEADS Battle Manager Begins Integration Testing in the United States

Elbit Establishes Israeli MOD Comms Equipment Supply Upgrade and Maintenance Project

Boeing FAB-T Demonstrates High-Data-Rate Communications with AEHF Satellite Test Terminal

NRL TacSat-4 Launches to Augment Communications Needs

CHIP TECH
ILS Proton Launches ViaSat-1 for ViaSat

Final checks for first Soyuz launch from Kourou

Soyuz is put through its paces for Thursday's launch

Russia blames scientists for rocket crashes

CHIP TECH
GIS Technology Plays Critical Role to Aid Joplin Tornado Survivors

Russia surprised as Apple uses Glonass in new iPhone

Galileo - keeping time with atomic clocks

Factfile on Galileo, Europe's rival to GPS

CHIP TECH
US House targets EU airlines emissions rule

China's aviation sector sees slower growth: report

Aircraft leasing growing in Latin America

Northrop Grumman Extends Airport Realtime Collaboration Capability

CHIP TECH
NIST measures key property of potential spintronic material

Superlattice Cameras Add More 'Color' to Night Vision

A new scheme for photonic quantum computing

Point defects in super-chilled diamonds may offer stable candidates for quantum computing bits

CHIP TECH
NASA postpones climate satellite launch to Oct 28

NASA Readies New Type of Earth-Observing Satellite for Launch

NASA, Japan Release Improved Topographic Map of Earth

NASA Readies New Type of Earth-Observing Satellite for Launch

CHIP TECH
Home washing machines: Source of potentially harmful ocean 'microplastic' pollution

Pollutants linked to a 450 percent increase in risk of birth defects

Greenpeace's Rainbow Warrior III makes maiden voyage

More oil spills from stricken New Zealand ship


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement