Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Stanford scientists publish theory, formula to improve 'plastic' semiconductors
by Tom Abate for Stanford Engineering News
Stanford CA (SPX) Sep 25, 2013


The yellow electric charge races through a "speed-lane" in this stylized view of a polymer semiconductor, but pauses before leaping to the next fast path. Stanford engineers are studying why this occurs with an eye toward building flexible electronics. Credit: Professor Andrew Spakowitz.

Anyone who's stuffed a smart phone in their back pocket would appreciate the convenience of electronic devices that could bend. Flexible electronics could spawn new products: clothing wired to cool or heat, reading tablets that could fold like newspaper, and so on.

Alas, electronic components such as chips, displays and wires are generally made from metals and inorganic semiconductors -- materials with physical properties that make them fairly stiff and brittle.

In the quest for flexibility many researchers have been experimenting with semiconductors made from plastics or, more accurately polymers, which bend and stretch readily enough.

"But at the molecular level polymers look like a bowl of spaghetti," says Stanford chemical engineering professor Andrew Spakowitz, adding: "Those non-uniform structures have important implications for the conductive properties of polymeric semiconductors."

Spakowitz and two colleagues, Rodrigo Noriega, a postdoctoral researcher at UC Berkeley, and Alberto Salleo, a Stanford professor of Materials Science and Engineering, have created the first theoretical framework that includes this molecular-level structural inhomogeneity, seeking to understand, predict and improve the conductivity of semiconducting polymers.

Their theory, published today (Monday Sept 23@12 pm PST) in the Proceedings of the National Academy of Sciences, deals with the observed tendency of polymeric semiconductors to conduct electricity at differing rates in different parts of the material - a variability that, as the Stanford paper explains, turns out to depend on whether the polymer strands are coiled up like a bowl of spaghetti or run relatively true, even if curved, like lanes on a highway.

In other words, the entangled structure that allows plastics and other polymers to bend also impedes their ability to conduct electricity, whereas the regular structure that makes silicon semiconductors such great electrical switches tends to make it a bad fit for our back pockets.

The Stanford paper in PNAS gives experimental researchers a model that allows them to understand the tradeoff between the flexibility and conductivity of polymeric semiconductors.

Grasping how they created their model requires a basic understanding of polymers. The word "polymer" is derived from the Greek for "many parts" which aptly describes their simple molecular structure, which consists of identical units, called monomers, that string together, end to end, like so many sausages.

Humans have long used natural polymers such as silk and wool, while newer industrial processes have adapted this same technique to turn end-to-end chains of hydrocarbon molecules, ultimately derived from petroleum byproducts, into plastics.

But it was only in the late 1970s that a trio of scientists discovered that plastics which, until then were considered non-conductive materials suitable to wrap around wires for insulation could, under certain circumstances, be induced to conduct electricity.

The three scientists, Alan Heeger, Alan MacDiarmid and Hideki Shirakawa, shared the Nobel Prize in Chemistry in 2000 for their co-discovery of polymeric semiconductors. In recent years, with increasing urgency, researchers have been trying to harness the finicky electrical properties of plastics with an eye toward fashioning electronics that will bend without breaking.

In the process of experimenting with polymeric semiconductors, however, researchers discovered that these flexible materials exhibited "anomalous transport behavior" or, simply put, variability in the speed at which electrons flowed through the system.

One of the fundamental insights of the Stanford paper is that electron flow through polymers is affected by their spaghetti-like structure - a structure that is far less uniform than that of the various forms of silicon and other inorganic semiconductors whose electrical properties are much better understood.

"Prior theories of electrical flow in polymeric semiconductors are largely extrapolated from our understanding of metals and inorganic semiconductors like silicon," Spakowitz said, adding that he and his collaborators began by taking a molecular-level view of the electron transport issue.

In essence, the variability of electron flow through polymeric semiconductors owes to the way the structure of these molecular chains creates fast paths and congestion points.

In a stylized sense imagine that a polymer chain runs relatively straight before coming to a hairpin turn to form a U-shape. An electric field moves electrons rapidly up to the hairpin, only to stall.

Meanwhile imagine a similar U-shape polymer separated from the first by a tiny gap. Eventually, the electrons will jump that gap to go from the first fast path to the opposing fast path. One way to think about this is a traffic analogy, in which the electrons must wait for a traffic light to cross from one street, though the gap, before proceeding down the next.

Most importantly, perhaps, in terms of putting this knowledge to use, the Stanford theory includes a simple algorithm that begins to suggest how to control the process for making polymers - and devices out of the resulting materials - with an eye toward improving their electronic properties.

"There are many, many types of monomers and many variables in the process," Spakowitz said. The model presented by the Stanford team simplifies this problem greatly by reducing it to a small number of variables describing the structural and electronic properties of semiconducting polymers. This simplicity does not preclude its predictive value; in fact, it makes it possible to evaluate the main aspects describing the physics of charge transport in these systems.

"A simple theory that works is a good start," said Spakowitz, who envisions much work ahead to bring bending smart phones and folding e-readers to reality.

.


Related Links
Stanford School of Engineering
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Promising new alloy for resistive switching memory
Washington DC (SPX) Sep 25, 2013
Memory based on electrically-induced "resistive switching" effects have generated a great deal of interest among engineers searching for faster and smaller devices because resistive switching would allow for a higher memory density. Researchers have tested a number of oxide materials for their promise in resistive switching memories, and now a team of researchers in Singapore have demonstr ... read more


CHIP TECH
NGC Completes Safety of Flight Testing on Common Infrared Countermeasure System

Green photon beams more agile than optical tweezers

Space oddity: the mystery of 2013 QW1

Domain walls as new information storage medium

CHIP TECH
Third Advanced EHF Satellite Will Enhance Resiliency of Military Communications

USAF Launches Third Advanced Extremely High Frequency Satellite

Atlas 5 Lofts 3rd AEHF Military Comms Satellites

Unified Military Intelligence Picture Helping to Dispel the Fog of War

CHIP TECH
Arianespace and Astrium sign deal to begin production of 18 new Ariane 5 vehicles

Problems with Proton booster fixed

Decontamination continues at Baikonur after Proton abortive launc

Russia launches three communication satellites

CHIP TECH
Astrium down selected for MOJ electronic tagging contract

Lockheed Martin GPS 3 Satellite Prototype Integrated With Raytheon OCX Ground Control Segment

China's navi-location industries to boom: white paper

OHN Christner Trucking Selects Orbcomm For Refrigerated Telematics Solution

CHIP TECH
Lockheed focused on South Korean jet re-tender

NGC and USAF Complete Warfighter Analysis Workshops

Japan, Belgium seek FMS deals

US to upgrade Japan's early warning radar aircraft: Pentagon

CHIP TECH
Promising new alloy for resistive switching memory

Counting on neodymium

UCSB researchers make headway in quantum information transfer via nanomechanical coupling

Stanford scientists publish theory, formula to improve 'plastic' semiconductors

CHIP TECH
UCLA scientists explain the formation of unusual ring of radiation in space

Ultra-fast Electrons Explain Third Radiation Ring Around Earth

Preparing to launch Swarm

ESA's GOCE mission to end this year

CHIP TECH
Pollution deadlier than road accidents in Sao Paulo

Chile ruling to keep Barrick mine closed to late 2014

Legacy Soil Pollution Higher lead levels may lie just below surface

PNG makes BHP liable for environmental damage from mine




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement