Subscribe free to our newsletters via your
. Space Industry and Business News .




MARSDAILY
Science Benefits From Diverse Landing Area Of NASA Mars Rover
by Staff Writers
Pasadena CA (JPL) Sep 30, 2013


File image.

NASA's Curiosity rover is revealing a great deal about Mars, from long-ago processes in its interior to the current interaction between the Martian surface and atmosphere.

Examination of loose rocks, sand and dust has provided new understanding of the local and global processes on Mars. Analysis of observations and measurements by the rover's science instruments during the first four months after the August 2012 landing are detailed in five reports in the Sept. 27 edition of the journal Science.

A key finding is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles' weight at Gale Crater where Curiosity landed. This result has global implications, because these materials are likely distributed around the Red Planet.

Curiosity also has completed the first comprehensive mineralogical analysis on another planet using a standard laboratory method for identifying minerals on Earth. The findings about both crystalline and non-crystalline components in soil provide clues to the planet's volcanic history.

Information about the evolution of the Martian crust and deeper regions within the planet comes from Curiosity's mineralogical analysis of a football-size igneous rock called "Jake M." Igneous rocks form by cooling molten material that originated well beneath the crust. The chemical compositions of the rocks can be used to infer the thermal, pressure and chemical conditions under which they crystallized.

"No other Martian rock is so similar to terrestrial igneous rocks," said Edward Stolper of the California Institute of Technology, lead author of a report about this analysis. "This is surprising because previously studied igneous rocks from Mars differ substantially from terrestrial rocks and from Jake M."

The other four reports include analysis of the composition and formation process of a windblown drift of sand and dust, by David Blake of NASA's Ames Research Center at Moffett Field, Calif., and co-authors.

Curiosity examined this drift, called Rocknest, with five instruments, preforming an onboard laboratory analysis of samples scooped up from the Martian surface. The drift has a complex history and includes sand particles with local origins, as well as finer particles that sample windblown Martian dust distributed regionally or even globally.

The rover is equipped with a laser instrument to determine material compositions from some distance away. This instrument found that the fine-particle component in the Rocknest drift matches the composition of windblown dust and contains water molecules. The rover tested 139 soil targets at Rocknest and elsewhere during the mission's first three months and detected hydrogen - which scientists interpret as water - every time the laser hit fine-particle material.

"The fine-grain component of the soil has a similar composition to the dust distributed all around Mars, and now we know more about its hydration and composition than ever before," said Pierre-Yves Meslin of the Institut de Recherche en Astrophysique et Planetologie in Toulouse, France, lead author of a report about the laser instrument results.

A laboratory inside Curiosity used X-rays to determine the composition of Rocknest samples. This technique, discovered in 1912, is a laboratory standard for mineral identification on Earth. The equipment was miniaturized to fit on the spacecraft that carried Curiosity to Mars, and this has yielded spinoff benefits for similar portable devices used on Earth. David Bish of Indiana University in Bloomington co-authored a report about how this technique was used and its results at Rocknest.

X-ray analysis not only identified 10 distinct minerals, but also found an unexpectedly large portion of the Rocknest composition is amorphous ingredients, rather than crystalline minerals. Amorphous materials, similar to glassy substances, are a component of some volcanic deposits on Earth.

Another laboratory instrument identified chemicals and isotopes in gases released by heating the Rocknest soil in a tiny oven. Isotopes are variants of the same element with different atomic weights. These tests found water makes up about 2 percent of the soil, and the water molecules are bound to the amorphous materials in the soil.

"The ratio of hydrogen isotopes in water released from baked samples of Rocknest soil indicates the water molecules attached to soil particles come from interaction with the modern atmosphere," said Laurie Leshin of Rensselaer Polytechnic Institute in Troy, N.Y., lead author of a report about analysis with the baking instrument.

Baking and analyzing the Rocknest sample also revealed a compound with chlorine and oxygen, likely chlorate or perchlorate, which previously was known to exist on Mars only at one high-latitude site. This finding at Curiosity's equatorial site suggests more global distribution.

Data obtained from Curiosity since the first four months of the rover's mission on Mars are still being analyzed. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, Calif., manages the mission for NASA's Science Mission Directorate in Washington. The mission draws upon international collaboration, including key instrument contributions from Canada, Spain, Russia and France.

.


Related Links
Mars Science Laboratory
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MARSDAILY
First scoop of Mars soil contains 2 percent water: study
Washington (AFP) Sept 26, 2013
The first scoop of Martian soil analyzed by NASA's Curiosity rover held about two percent water, offering hope for hydrating humans who someday explore the Red Planet, scientists said Thursday. "We saw Mars as a very dry desert and while this is not as much water you will find in Earth soil... it's substantial," said Laurie Leshin, lead author of the study in the journal Science. In a cu ... read more


MARSDAILY
NGC Completes Safety of Flight Testing on Common Infrared Countermeasure System

Green photon beams more agile than optical tweezers

Space oddity: the mystery of 2013 QW1

Domain walls as new information storage medium

MARSDAILY
Third Advanced EHF Satellite Will Enhance Resiliency of Military Communications

USAF Launches Third Advanced Extremely High Frequency Satellite

Atlas 5 Lofts 3rd AEHF Military Comms Satellites

Unified Military Intelligence Picture Helping to Dispel the Fog of War

MARSDAILY
ILS Proton Successfully Launches ASTRA 2E for SES

APSCC 2013 reaffirms Arianespace's focus on the Asia-Pacific region

Arianespace and Astrium sign deal to begin production of 18 new Ariane 5 vehicles

Problems with Proton booster fixed

MARSDAILY
Astrium down selected for MOJ electronic tagging contract

Lockheed Martin GPS 3 Satellite Prototype Integrated With Raytheon OCX Ground Control Segment

China's navi-location industries to boom: white paper

OHN Christner Trucking Selects Orbcomm For Refrigerated Telematics Solution

MARSDAILY
US F-35 jet plagued by shoddy quality control: audit

Indian navy gets its first Hawk trainer jets

Lockheed focused on South Korean jet re-tender

NGC and USAF Complete Warfighter Analysis Workshops

MARSDAILY
Promising new alloy for resistive switching memory

Counting on neodymium

UCSB researchers make headway in quantum information transfer via nanomechanical coupling

Stanford scientists publish theory, formula to improve 'plastic' semiconductors

MARSDAILY
Australia's new prototype vehicle to improve Earth observation satellites' accuracy

UCLA scientists explain the formation of unusual ring of radiation in space

Ultra-fast Electrons Explain Third Radiation Ring Around Earth

Preparing to launch Swarm

MARSDAILY
Pollution deadlier than road accidents in Sao Paulo

Chile ruling to keep Barrick mine closed to late 2014

Legacy Soil Pollution Higher lead levels may lie just below surface

PNG makes BHP liable for environmental damage from mine




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement