. Space Industry and Business News .




.
TECH SPACE
NASA Develops Super-Black Material That Absorbs Light Across Multiple Wavelength Bands
by Lori Keesey for Goddard Space Flight Center,
Greenbelt, MD (SPX) Nov 11, 2011

This close-up view (only about 0.03 inches wide) shows the internal structure of a carbon-nanotube coating that absorbs about 99 percent of the ultraviolet, visible, infrared, and far-infrared light that strikes it. A section of the coating, which was grown on smooth silicon, was purposely removed to show the tubes' vertical alignment. (Credit: Stephanie Getty, NASA Goddard). For a larger version of this image please go here.

NASA engineers have produced a material that absorbs on average more than 99 percent of the ultraviolet, visible, infrared, and far-infrared light that hits it - a development that promises to open new frontiers in space technology.

The team of engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., reported their findings recently at the SPIE Optics and Photonics conference, the largest interdisciplinary technical meeting in this discipline.

The team has since reconfirmed the material's absorption capabilities in additional testing, said John Hagopian, who is leading the effort involving 10 Goddard technologists.

"The reflectance tests showed that our team had extended by 50 times the range of the material's absorption capabilities. Though other researchers are reporting near-perfect absorption levels mainly in the ultraviolet and visible, our material is darn near perfect across multiple wavelength bands, from the ultraviolet to the far infrared," Hagopian said. "No one else has achieved this milestone yet."

The nanotech-based coating is a thin layer of multi-walled carbon nanotubes, tiny hollow tubes made of pure carbon about 10,000 times thinner than a strand of human hair.

They are positioned vertically on various substrate materials much like a shag rug. The team has grown the nanotubes on silicon, silicon nitride, titanium, and stainless steel, materials commonly used in space-based scientific instruments.

(To grow carbon nanotubes, Goddard technologist Stephanie Getty applies a catalyst layer of iron to an underlayer on silicon, titanium, and other materials. She then heats the material in an oven to about 1,382 degrees Fahrenheit. While heating, the material is bathed in carbon-containing feedstock gas.)

The tests indicate that the nanotube material is especially useful for a variety of spaceflight applications where observing in multiple wavelength bands is important to scientific discovery. One such application is stray-light suppression.

The tiny gaps between the tubes collect and trap background light to prevent it from reflecting off surfaces and interfering with the light that scientists actually want to measure.

Because only a small fraction of light reflects off the coating, the human eye and sensitive detectors see the material as black.

In particular, the team found that the material absorbs 99.5 percent of the light in the ultraviolet and visible, dipping to 98 percent in the longer or far-infrared bands.

"The advantage over other materials is that our material is from 10 to 100 times more absorbent, depending on the specific wavelength band," Hagopian said.

"We were a little surprised by the results," said Goddard engineer Manuel Quijada, who co-authored the SPIE paper and carried out the reflectance tests. "We knew it was absorbent. We just didn't think it would be this absorbent from the ultraviolet to the far infrared."

If used in detectors and other instrument components, the technology would allow scientists to gather hard-to-obtain measurements of objects so distant in the universe that astronomers no longer can see them in visible light or those in high-contrast areas, including planets in orbit around other stars, Hagopian said. Earth scientists studying the oceans and atmosphere also would benefit.

More than 90 percent of the light Earth-monitoring instruments gather comes from the atmosphere, overwhelming the faint signal they are trying to retrieve.

Currently, instrument developers apply black paint to baffles and other components to help prevent stray light from ricocheting off surfaces.

However, black paints absorb only 90 percent of the light that strikes it. The effect of multiple bounces makes the coating's overall advantage even larger, potentially resulting in hundreds of times less stray light.

In addition, black paints do not remain black when exposed to cryogenic temperatures. They take on a shiny, slightly silver quality, said Goddard scientist Ed Wollack, who is evaluating the carbon-nanotube material for use as a calibrator on far-infrared-sensing instruments that must operate in super-cold conditions to gather faint far-infrared signals emanating from objects in the very distant universe.

If these instruments are not cold, thermal heat generated by the instrument and observatory, will swamp the faint infrared they are designed to collect.

Black materials also serve another important function on spacecraft instruments, particularly infrared-sensing instruments, added Goddard engineer Jim Tuttle.

The blacker the material, the more heat it radiates away. In other words, super-black materials, like the carbon nanotube coating, can be used on devices that remove heat from instruments and radiate it away to deep space. This cools the instruments to lower temperatures, where they are more sensitive to faint signals.

To prevent the black paints from losing their absorption and radiative properties at long wavelengths, instrument developers currently use epoxies loaded with conductive metals to create a black coating.

However, the mixture adds weight, always a concern for instrument developers. With the carbon-nanotube coating, however, the material is less dense and remains black without additives, and therefore is effective at absorbing light and removing heat.

"This is a very promising material," Wollack said. "It's robust, lightweight, and extremely black. It is better than black paint by a long shot."

Related Links
Goddard Space Flight Center
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
An Incredible Shrinking Material
Pasadena CA (SPX) Nov 08, 2011
They shrink when you heat 'em. Most materials expand when heated, but a few contract. Now engineers at the California Institute of Technology (Caltech) have figured out how one of these curious materials, scandium trifluoride (ScF3), does the trick-a finding, they say, that will lead to a deeper understanding of all kinds of materials. The researchers, led by graduate student Chen Li, publ ... read more


TECH SPACE
New metamaterial allows transmission gain while retaining negative refraction property

iPhone 4S making frenzied debut in 15 new markets

Are electron tweezers possible

NASA Develops Super-Black Material That Absorbs Light Across Multiple Wavelength Bands

TECH SPACE
LockMart Provides Affordable Smartphone Tactical Network Capability to US Marine Corps

AEHF-1 Satellite Arrives at Its Operational Orbit After 14-Month Journey

China suspect in US satellite interference: report

Emirates seek French military satellite

TECH SPACE
Six Astrium satellites on the same flight

Arianespace's no. 2 Soyuz begins taking shape for launch from the Spaceport in French Guiana

Vega getting ready for exploitation

MSU satellite orbits the Earth after early morning launch

TECH SPACE
In GPS case, US court debates '1984' scenario

Galileo satellites handed over to control centre in Germany

Map mischief creates furore in India

Russia launches navigation satellites

TECH SPACE
Taiwan, Japan sign open skies agreement

Qantas puts Hong Kong on A380 network

Aviation grappling with new taxes and rules: AAPA

EU sticks to airline carbon rules despite UN opposition

TECH SPACE
Researchers 'create' crystals by computer

The world's most efficient flexible OLED on plastic

A KAIST research team has developed a fully functional flexible memory

UCSB physicists identify room temperature quantum bits in widely used semiconductor

TECH SPACE
Stalled Weather Systems More Frequent in Decades of Warmer Atlantic

Thousand-Color Sensor Reveals Contaminants in Earth and Sea

NASA Launches JPL-Built Earth Science Experiment

Halloween Weekend Snow Paints a Ghostly Picture in the U.S. Northeast

TECH SPACE
Carbon Monoxide - The Silent Calmer?

Decline in dead zones: Efforts to heal Chesapeake Bay are working

Celebrities pressure China over pollution gauge

High toxic levels found at school, market neighboring informal e-waste salvage site in Africa


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement