Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Mainz laser system allows determination of atomic binding energy of the rarest element on earth
by Staff Writers
Mainz, Germany (SPX) Jul 08, 2013


Close-up of the Mainz laser system. Photo: Pascal Naubereit.

The radioactive element astatine, the name of which is derived from the Greek word for 'instability,' is so rare on earth that it has not yet been investigated to any greater extent and, as a consequence, very little is known about it.

Using artificially generated astatine, the Mainz-based physicist Sebastian Rothe has now managed for the first time to experimentally explore one of its fundamental parameters, the ionization potential, and thus determine one of the most important properties of the rare element.

The ionization potential is the binding energy, i.e., the amount of energy required to remove an electron from an atom's outer shell. It determines the entire chemical binding characteristics of that element.

The measurements were undertaken at the laboratory of the CERN European Organization for Nuclear Research near Geneva using special lasers developed by the LARISSA working group at the Institute of Physics at Johannes Gutenberg University Mainz (JGU). The online journal Nature Communications recently published the findings.

Astatine is the rarest naturally occurring element on earth. The earth's mantel is estimated to contain only 0.07 grams. Together with fluorine, chlorine, and iodine, it is a member of the halogen group, and is formed as a result of the natural decay of uranium.

Nuclear physicists now know of more than 20 isotopes which are all extremely short-lived and decay with a half-life of no more than eight hours. Alpha rays are emitted during decay, making the element particularly interesting for targeted cancer therapy thanks to its short lifespan.

"Astatine is the only halogen we have known absolutely nothing about to date", explained Professor Klaus Wendt, head of the LARISSA working group at the Institute of Physics at Johannes Gutenberg University Mainz (JGU).

A doctoral candidate and member of this work group, Sebastian Rothe, investigated the ionization potential of astatine using laser spectroscopy and determined it had a value of 9.31751 electron volts (eV). The measurements were conducted at CERN in Geneva and were extrapolated and confirmed at the Canadian research center for particle and nuclear physics TRIUMF in Vancouver in Canada.

LARISSA is an acronym for 'Laser Resonance Ionization for Spectroscopy in Selective Applications'. The technique is based on work originally conducted by Mainz physicist Professor Ernst Otten more than 30 years ago using the isotope mass separator ISOLDE at CERN.

It is now the technique of choice employed at almost all large-scale research facilities throughout the world to produce and examine exotic radioisotopes and is commonly used applying the Mainz laser system. It involves the use of laser light for the gradual optical excitation of a valence electron of a selected atomic species until the point of ionization.

"Astatine is the last naturally occurring element whose ionization potential had yet to be determined experimentally," stated Rothe.

The binding energy of the electrons in its outermost shell determines what chemical reactions astatine will undergo and thus the stability of its chemical bonds. It is believed that the astatine isotope 211 may have a major pharmaceutical potential.

It is an exceptional candidate for use in cancer therapy because of its decay profile, the aggressiveness of its alpha radiation, and the limited range of its radiation. It is also a member of the halogen family, which can be readily introduced into the human body to be attached directly to cancer cells.

.


Related Links
Institute of Physics at Johannes Gutenberg University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Saarland University scientists reveal structure of a supercooled liquid
Hamburg, Germany (SPX) Jul 08, 2013
The experimental work, which was performed at the German Electron Synchrotron Facility (DESY) in Hamburg, involved levitating hot metal droplets and observing them as they cooled by irradiating them with x-rays from one of the world"s strongest x-ray sources. The research work is funded by the German Research Foundation (DFG) and the results have just been published in "Nature Communications". ... read more


TECH SPACE
Mainz laser system allows determination of atomic binding energy of the rarest element on earth

After millennia of mining, copper nowhere near 'peak'

BBC announces decision to halt 3D television programming

Making hydrogenation greener

TECH SPACE
Canada links up on secure U.S. military telecoms network

Lockheed Martin-Built MUOS Satellite Encapsulated In Launch Vehicle Payload Fairing

Northrop Grumman, MILSATCOM Conduct Preliminary Design Review of Enhanced Polar System Control and Planning Segment

Mutualink Unveils Man-Portable Multimedia Interoperable Ops Fusion Kit with Secure Tactical 4G LTE Bubble Capability

TECH SPACE
Premature launch said likely cause of Russian rocket failure

Europe okays design for next-generation rocket

Kazakh PM orders to form govt commission to assess environmental impact from Proton crash

Analysis of telemetry data of crashed Proton rocket flight completed

TECH SPACE
Indian GPS satellite orbit to be raised on Tuesday night

Loss of three GLONASS satellites won't reduce efficiency of Russian navigation network

India launches satellite for new navigation system

Beidou's second trial held in Yangtze Delta

TECH SPACE
China anxiously awaits updates after Asiana jet crash

Canada, China to boost air links as accord reached

Two killed as chopper crashes at Libya airshow

Investigators stand by TWA explosion theory

TECH SPACE
Solving electron transfer

Microscopy technique could help computer industry develop 3-D components

New low-cost, transparent electrodes

Taiwan's TSMC gets orders from Apple: report

TECH SPACE
Long-lived oceanography satellite decommissioned after equipment fails

Images From New Space Station Camera Help U.S. Neighbor to the North

Astrium's Cloud Services will support Western Australia Lands Department

Five Years of Stereo Imaging for NASA's TWINS

TECH SPACE
China hit by largest-ever algae bloom

Thousands of fish die in contaminated Mexico reservoir

Singapore's clean image sullied by Indonesian smog

China and haze to dominate Asia security meeting




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement