Space Industry and Business News  
TIME AND SPACE
How Much Mass Makes A Black Hole

This artist's impression shows the magnetar in the very rich and young star cluster Westerlund 1. This remarkable cluster contains hundreds of very massive stars, some shining with a brilliance of almost one million suns. European astronomers have for the first time demonstrated that this magnetar - an unusual type of neutron star with an extremely strong magnetic field - was formed from a star with at least 40 times as much mass as the Sun. The result presents great challenges to current theories of how stars evolve, as a star as massive as this was expected to become a black hole, not a magnetar. Credit: ESO/L. Calcada
by Staff Writers
Paris, France (SPX) Aug 19, 2010
Using ESO's Very Large Telescope, European astronomers have for the first time demonstrated that a magnetar - an unusual type of neutron star - was formed from a star with at least 40 times as much mass as the Sun. The result presents great challenges to current theories of how stars evolve, as a star as massive as this was expected to become a black hole, not a magnetar.

This now raises a fundamental question: just how massive does a star really have to be to become a black hole?

To reach their conclusions, the astronomers looked in detail at the extraordinary star cluster Westerlund 1, located 16 000 light-years away in the southern constellation of Ara (the Altar).

From previous studies (eso0510), the astronomers knew that Westerlund 1 was the closest super star cluster known, containing hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two thousand times the diameter of the Sun (as large as the orbit of Saturn).

"If the Sun were located at the heart of this remarkable cluster, our night sky would be full of hundreds of stars as bright as the full Moon," says Ben Ritchie, lead author of the paper reporting these results.

Westerlund 1 is a fantastic stellar zoo, with a diverse and exotic population of stars. The stars in the cluster share one thing: they all have the same age, estimated at between 3.5 and 5 million years, as the cluster was formed in a single star-formation event.

A magnetar (eso0831) is a type of neutron star with an incredibly strong magnetic field - a million billion times stronger than that of the Earth, which is formed when certain stars undergo supernova explosions.

The Westerlund 1 cluster hosts one of the few magnetars known in the Milky Way. Thanks to its home in the cluster, the astronomers were able to make the remarkable deduction that this magnetar must have formed from a star at least 40 times as massive as the Sun.

As all the stars in Westerlund 1 have the same age, the star that exploded and left a magnetar remnant must have had a shorter life than the surviving stars in the cluster.

"Because the lifespan of a star is directly linked to its mass - the heavier a star, the shorter its life - if we can measure the mass of any one surviving star, we know for sure that the shorter-lived star that became the magnetar must have been even more massive," says co-author and team leader Simon Clark.

"This is of great significance since there is no accepted theory for how such extremely magnetic objects are formed."

The astronomers therefore studied the stars that belong to the eclipsing double system W13 in Westerlund 1 using the fact that, in such a system, masses can be directly determined from the motions of the stars.

By comparison with these stars, they found that the star that became the magnetar must have been at least 40 times the mass of the Sun. This proves for the first time that magnetars can evolve from stars so massive we would normally expect them to form black holes.

The previous assumption was that stars with initial masses between about 10 and 25 solar masses would form neutron stars and those above 25 solar masses would produce black holes.

"These stars must get rid of more than nine tenths of their mass before exploding as a supernova, or they would otherwise have created a black hole instead," says co-author Ignacio Negueruela. "Such huge mass losses before the explosion present great challenges to current theories of stellar evolution."

"This therefore raises the thorny question of just how massive a star has to be to collapse to form a black hole if stars over 40 times as heavy as our Sun cannot manage this feat," concludes co-author Norbert Langer.

The formation mechanism preferred by the astronomers postulates that the star that became the magnetar - the progenitor - was born with a stellar companion. As both stars evolved they would begin to interact, with energy derived from their orbital motion expended in ejecting the requisite huge quantities of mass from the progenitor star.

While no such companion is currently visible at the site of the magnetar, this could be because the supernova that formed the magnetar caused the binary to break apart, ejecting both stars at high velocity from the cluster.

"If this is the case it suggests that binary systems may play a key role in stellar evolution by driving mass loss - the ultimate cosmic 'diet plan' for heavyweight stars, which shifts over 95% of their initial mass," concludes Clark.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
ESO
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


TIME AND SPACE
Black Hole Jerked Around Twice
Boston MA (SPX) Jul 23, 2010
Scientists have found evidence that a giant black hole has been jerked around twice, causing its spin axis to point in a different direction from before. This discovery, made with new data from NASA's Chandra X-ray Observatory, might explain several mysterious-looking objects found throughout the Universe. The axis of the spinning black hole is thought to have moved, but not the black hole ... read more







TIME AND SPACE
"Fahrenheit 451" author burns at idea of digital books

Safer Plastics That Lock In Potentially Harmful Plasticizers

Power Problem With Insat-4B

Colorado Space Grant Consortium And LockMart To Develop CubeSat

TIME AND SPACE
USAF Launches First AEHF Satellite

Persistent Wireless Broadband Communications Network For The Battlefield

Mexican navy aircraft to use Telephonics

Raytheon's ASTOR Saving Lives In The Counterinsurgency Battle

TIME AND SPACE
Arianespace Announces Launch Contracts For Intelsat-20 And GSAT 10 Satellites

Arianespace Launches Two Satellites

New Rocket Launch Period In And Around Tanegashima

Kourou Spaceport Welcomes New Liquid Oxygen And Liquid Nitrogen Production Facility

TIME AND SPACE
Life360 Launches Real-Time Family Tracking App For iPhone

Real-Time Polar Bear News Featured On New Churchill Polar Bears Website

Hunter's iJournal Provides iPhone Users A Way To Improve Their Hunting Skills

India Launches Satellite-Based Navigation System

TIME AND SPACE
Lightning bolts a risk for modern jets

Russian analysts assail aerial projects

US Senate legend Stevens killed in Alaska plane crash

Turkey's aerial industries prosper

TIME AND SPACE
Computer data stored with 'spintronics'

Protein From Poplar Trees Can Be Used To Greatly Increase Computer Capacity

Polymer Synthesis Could Aid Future Electronics

Acer, Asus and Lenovo lead pack as PC sales surge

TIME AND SPACE
Google doubles Germans' opt-out deadline for Street View

New Satellite Data Reveals True Decline Of World's Mangrove Forests

An Ocean Of Research Via Satellite

NASA's TRMM Satellite Maps Flood Potential

TIME AND SPACE
Marine Pied Piper Leads Nemo Astray

Gabonese NGO decries effects of mining

Texas Petrochemical Emissions Down, But Still Underestimated

Study: Better pollution measuring a must


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement