. Space Industry and Business News .




.
TECH SPACE
Honeycombs of magnets could lead to new type of computer processing
by Simon Levey for Imperial College News
London UK (SPX) Apr 03, 2012

Honeycomb shaped nano-magnet mesh.

Scientists have taken an important step forward in developing a new material using nano-sized magnets that could ultimately lead to new types of electronic devices, with greater processing capacity than is currently feasible, in a study published in the journal Science.

Many modern data storage devices, like hard disk drives, rely on the ability to manipulate the properties of tiny individual magnetic sections, but their overall design is limited by the way these magnetic 'domains' interact when they are close together.

Now, researchers from Imperial College London have demonstrated that a honeycomb pattern of nano-sized magnets, in a material known as spin ice, introduces competition between neighbouring magnets, and reduces the problems caused by these interactions by two-thirds. They have shown that large arrays of these nano-magnets can be used to store computable information. The arrays can then be read by measuring their electrical resistance.

The scientists have so far been able to 'read' and 'write' patterns in the magnetic fields, and a key challenge now is to develop a way to utilise these patterns to perform calculations, and to do so at room temperature. At the moment, they are working with the magnets at temperatures below minus 223 degrees C.

Research author Dr Will Branford and his team have been investigating how to manipulate the magnetic state of nano-structured spin ices using a magnetic field and how to read their state by measuring their electrical resistance.

They found that at low temperatures (below minus 223C) the magnetic bits act in a collective manner and arrange themselves into patterns. This changes their resistance to an electrical current so that if one is passed through the material, this produces a characteristic measurement that the scientists can identify.

The scientists have so far been able to 'read' and 'write' patterns at room temperature. However, at the moment the collective behaviour is only seen at temperatures below minus 223C. A key challenge now is to develop a way to utilise these patterns to perform calculations, and to do so at room temperature.

Current technology uses one magnetic domain to store a single bit of information. The new finding suggests that a cluster of many domains could be used to solve a complex computational problem in a single calculation. Computation of this type is known as a neural network, and is more similar to how our brains work than to the way in which traditional computers process information.

Dr Branford, who is an EPSRC Career Acceleration Fellow in the Department of Physics at Imperial College London, said: "Electronics manufacturers are trying all the time to squeeze more data into the same devices, or the same data into a tinier space for handheld devices like smart phones and mobile computers. However, the innate interaction between magnets has so far limited what they can do.

In some new types of memory, manufacturers try to avoid the limitations of magnetism by avoiding using magnets altogether, using things like ferroelectric (flash) memory, memristors or antiferromagnets instead. However, these solutions are slow, expensive or hard to read out. Our philosophy is to harness the magnetic interactions, making them work in our favour."

Although today's research represents a key step forward, the researchers say there are many hurdles to overcome before scientists will be able to create prototype devices based on this technique such as developing an algorithm to control the computation.

The nature of this algorithm will determine whether the room temperature state can be used or if the low temperature collective behaviour is required. However, they are optimistic that if these challenges can be tackled successfully, new technology using magnetic honeycombs might be available in ten to fifteen years.

In experiments, Dr Branford applied an electrical current across a continuous honeycomb mesh, made from cobalt magnetic bars each 1 micrometer long and 100 nanometres wide, and covering an area 100 square micrometers (as pictured). A single unit of the honeycomb mesh is like three bar magnets meeting in the centre of a triangle.

There is no way to arrange them without having either two north poles or two south poles touching and repelling each other, this is called a 'frustrated' magnetic system. In a single triangular unit there are six ways to arrange the magnets such that they have exactly the same level of frustration, and as you increase the number of triangular units in the honeycomb, the number of possible arrangements of magnets increases exponentially, increasing the complexity of possible patterns.

Previous studies have shown that external magnetic fields can cause the magnetic domain of each bar to change state. This in turn affects the interaction between that bar and its two neighbouring bars in the honeycomb, and it is this pattern of magnetic states that Dr Branford says could be computer data.

Dr Branford said: "The strong interaction between neighbouring magnets allows us to subtly affect how the patterns form across the honeycomb. This is something we can take advantage of to compute complex problems because many different outcomes are possible, and we can differentiate between them electronically. Our next big challenge is to make an array of nano-magnets that can be 'programmed' without using external magnetic fields."

Related Links
Imperial College London
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
New understanding of how materials change when rapidly heated
Southampton UK (SPX) Apr 03, 2012
Collaboration between the University of Southampton and the University of Cambridge has made ground-breaking advances in our understanding of the changes that materials undergo when rapidly heated. Using cutting edge equipment and specially designed MEM's sensors on loan from Mettler-Toledo, scientists from the University of Southampton's Optoelectronic Research Centre and the University o ... read more


TECH SPACE
New understanding of how materials change when rapidly heated

Northrop Grumman Conducts Air and Missile Defense Radar System Reviews

Honeycombs of magnets could lead to new type of computer processing

Facebook fans get to play out celebrity fantasies

TECH SPACE
Raytheon to Continue Supporting Coalition Forces' Information-Sharing Computer Network

Northrop Grumman Wins Contract for USAF Command and Control Modernization Program

TacSat-4 Enables Polar Region SatCom Experiment

'See Me' satellites may help ground forces

TECH SPACE
Space Launch System Program Completes Step One of Combined Milestone Reviews

Russian Proton-M Puts Military Satellite into Orbit

ORS SpaceLoft-6 launch to test reliability, durability of payloads in suborbital voyage

China launches French-made communication satellite

TECH SPACE
How interstellar beacons could help future astronauts find their way across the universe

ISS Keeps Watch on World's Sea Traffic

Many US police use cell phones to track: study

Spinning stars could guide spacecraft

TECH SPACE
Engine failure forces Cathay jet to turn back

China Southern committed to Airbus orders: report

Asia gets new budget airline eyeing Chinese flyers

South Africa, Singapore airlines fined for price-fixing

TECH SPACE
Quantum information motion control is now improved

Australian WiFi inventors win US legal battle

Researchers discover a new path for light through metal

More energy efficient transistors through quantum tunneling

TECH SPACE
NASA Sees Fields of Green Spring up in Saudi Arabia

Checking CryoSat reveals rising Antarctic blue ice

West Antarctic Ice Shelves Tearing Apart at the Seams

Signs of thawing permafrost revealed from space

TECH SPACE
35,000 gallons of prevention

State of the planet

Oil from Deepwater Horizon disaster entered food chain in the Gulf of Mexico

Study shows air emissions near fracking sites may impact health


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement