Space Industry and Business News  
Fish Growth Enhanced By Climate Change

CSIRO's Dr Ron Thresher with deep-ocean corals used in the study to assess growth rates in fish species.
by Staff Writers
Canberra, Australia (SPX) Apr 27, 2007
Changes in growth rates in some coastal and long-lived deep-ocean fish species in the south west Pacific are consistent with shifts in wind systems and water temperatures, according to new Australian research published in the United States this week.

"We have drawn correlations between the growth of fish species related to their environmental conditions - faster growth in waters above a depth of 250 metres and slower rates of growth below 1,000 metres," says lead author, Dr Ron Thresher.

"These observations suggest that global climate change has enhanced some elements of productivity of shallow-water stocks but at the same time reduced the productivity and possibly the resilience of deep water stocks," he says.

A biological oceanographer with CSIRO's Wealth from Oceans Research Flagship, Dr Thresher said the research - published in the latest edition of the US science journal, Proceedings of the National Academy of Sciences - is based on the examination of fish earbones, or otoliths, which show similar characteristics to the growth rings used to date the age of trees.

The work was done in collaboration with the Victorian Marine and Aquatic Fisheries Research Institute, which has specialist skills in analysing otoliths.

Water temperatures have been obtained from a 60-year-long record at Maria Island on the Tasmanian east coast, and using 400-year-old deep-ocean corals to measure temperate at depth.

Dr Thresher said populations of large marine species are widely subject to two major stressors - commercial fishing and climate change. Heavy exploitation increases the sensitivity of species to environmental effects and could be magnifying the effects of long-term climate change and short-term climate variability on the viability of some species.

He said correlations for long-lived shallow and deep-water species suggest that water temperatures have been a primary factor in determining juvenile growth rates in the species examined - Banded morwong, redfish, Jackass Morwong, Spiky, black, smooth and Warty Oreo and Orange roughy.

Because of the pervasive effect of temperature on the physiology and growth of marine animals, it was likely that similar effects would be seen in many other species.

The science team examined 555 specimens ranging in age from two to 128 years, with birth years from 1861 to 1993.

Growth rates of a coastal species, juvenile morwong, in the 1990s were 28.5 per cent faster than at the beginning of the period under assessment in the mid-1950s. By comparison, juvenile oreos, a species found at depths of around 1,000 metres, were growing 27.9 per cent slower than in the 1860s. There was no or little change in the growth rates of species found between 500 and 1,000 metres.

Growth rates of the juveniles of the deep-water species all began decreasing well before the onset of commercial fishing.

Dr Thresher said slower growth in fishes has been correlated with a variety of life history traits - from higher mortality to reduced food availability and increased age or smaller size at sexual maturity.

He said comparisons of historical and modern oceanographic data indicate temperature trends very similar to the apparent changes in growth rates. In the south west Pacific east of Tasmania sea surface temperatures have risen nearly two degrees, based on the results of a monitoring program at Maria Island.

Coinciding with this has been a southward shift in South Pacific zonal winds which has strengthened the warm, poleward-flowing East Australian Current.

"Modelling suggests that, with increasing global warming, temperatures at intermediate depths are likely to rise near-globally," Dr Thresher said. "This could mean that over the course of time, the decrease in growth rates for the deep-water species could slow or even be reversed," Dr Thresher said.

The paper: Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish, was authored by Dr Thresher, Dr Tony Koslow, now of the Scripps Institute of Oceanography, Dr A.K. Morison, now at the Bureau of Resource Sciences, and Dr David Smith, now of CSIRO. It follows the recent release of a report for the Australian Greenhouse Office by the Wealth from Oceans Flagship. Climate's challenge to marine life in a future ocean (Media release 4 Apr 07)

Related Links
CSIRO
The latest farming technology and science news
Farming Today - Suppliers and Technology



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Researcher Finds Negative Effects Of Colonization On Slash-And-Burn Farming In Borneo
Columbia MO (SPX) Apr 25, 2007
A researcher at the University of Missouri-Columbia has examined the slash-and-burn farming method traditionally used by the Iban, a widespread indigenous population that lives in northwestern Borneo in Southeast Asia. Researchers have long argued about the environmental effects of this type of agriculture.







  • Couch Potatoes On Track For Virtual World
  • All Of Russia Will Have Internet And Phone Access
  • Wildblue High-Speed Internet Via Satellite Triples Capacity With New Satellite
  • Publish, Perish Attitudes Make Profs Balk At Online Publication

  • Equator Space Launch Plan
  • Orbital Minotaur Launches US Missile Defense Agency NFIRE Satellite
  • Minotaur Launched From NASA Wallops Flight Facility
  • ASTRA 1L Integrated To Ariane 5 Dual-Payload Dispenser System

  • Australia Fears Jet Flight Guilt Could Hit Tourism
  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals

  • TSAT Team Moves Closer To Developing Flight-Ready Laser Terminals
  • Raytheon To Supply Canada With Enhanced Position Location Reporting System Terminals
  • Intelsat To Test Internet Routing In Space For The US Military
  • Northrop Grumman And LockMart Team Up For Integrated Air And Missile Defense Battle Command

  • New Family Of Pseudo-Metallic Chemicals Could Create New Electronic Materials
  • Ultrasound Upgrade Produces Images That Work Like 3-D Movies
  • Scientists Design New Super-Hard Material
  • Everything Starts With Recognition

  • Dodgen Joins Northrop Grumman As Vice President Of Strategy For Missile Systems Business
  • Townsend To Lead Ball Aerospace Exploration Systems In Huntsville
  • NASA Nobel Prize Recipient To Lead Chief Scientist Office
  • Kathryn Kynard Plays Key Role In Ares I Upper Stage Engine Development

  • AIM Soars To The Edge Of Space For Unique Earth Observation Mission
  • Cloudsat Standard Data Products Released To Science Community
  • Envisat Symposium 2007 Kicks Off In Switzerland
  • Scientists Meet To Review Envisat Results After Five Years Of Operations

  • EU Parliament Deeply Concerned About Troubled Galileo Project
  • Boeing Demonstrates Key GPS 3 Features In Critical Program Review
  • Safer Air Traffic With EGNOS
  • Boeing-Led Team Developing Surface Navigation Concept For DARPA

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement