Dude, Big Screen TVs, Flexible Electronics And Surfboards Made From Same New Material
Cambridge, UK (SPX) Nov 22, 2007 There is nothing new about combining two materials to make a composite material with more desirable properties than the originals. Fibreglass has been a mainstay of the marine industry for decades and the construction industry is built on reinforced concrete. Now carbon nanotubes (CNT) are getting in on the act with nanotechnologists working out how to grow nanotube reinforcements for polymers in an ideal manner. Researchers from Trinity College have developed a scalable inexpensive technique to grow grid patterns of nanotube arrays. To maximise the effect of CNT reinforcement on a polymer thin film, while minimizing nanotube content, a controllable way of varying the volume fraction of CNTs within the composite is needed. In order to do this, the inter-grid spacing can be tailored as required giving a simple method of controlling the volume fraction of nanotubes grown on substrates. The research work by Werner J. Blau, Dr. Emer Lahiff, Andrew I. Minett and Dr. Kentaro Nakajima is expected to lead to incorporation of CNTs in polymer matrices within flat panel displays, sensors, flexible electronic devices and actuators. The study has been published in a special edition of the open access journal, AZoJono. This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology. Related Links AZoNetwork Space Technology News - Applications and Research
Argonne Scientists Use Unique Diamond Anvils To View Oxide Glass Structures Under Pressure Argonne IL (SPX) Nov 12, 2007 Researchers at the U.S. Department of Energy's Argonne National Laboratory have used a uniquely-constructed perforated diamond cell to investigate oxide glass structures at high pressures in unprecedented detail. Argonne physicist Chris Benmore and postdoctoral appointee Qiang Mei, along with colleagues at the University of Arizona, used microscopic laser-perforated diamond anvil cells to generate pressures of up to 32 gigapascals (GPa) - roughly one-tenth the pressure at the center of the Earth. |
|
The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement |