|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Kyoto, Japan (SPX) Oct 20, 2014
Researchers in Japan have developed a novel yet simple technique, called "diffusion driven layer-by-layer assembly," to construct graphene into porous three-dimensional (3D) structures for applications in devices such as batteries and supercapacitors. Their study was recently published in the journal Nature Communications. Graphene is essentially an ultra-thin sheet of carbon and possesses exciting properties such as high mechanical stability and remarkable electrical conductivity. It has been touted as the next generation material that can conceivably revolutionize existing technology and energy sectors as we know them. However, the thin structure of graphene also acts as a major obstacle for practical uses. When piecing together these tiny sheets into larger structures, the sheets easily stack with one another, resulting in a significant loss of unique material properties. While several strategies have been proposed to deal with this sticky issue, they are often costly, time consuming, and difficult to scale up. To overcome this challenge, the researchers from the Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University borrowed a principle from polymer chemistry and developed it into a technique to assemble graphene into porous 3D architectures while preventing stacking between the sheets. By putting graphene oxide (an oxidized form of graphene) into contact with an oppositely charged polymer, the two components could form a stable composite layer, a process also known as "interfacial complexation." "Interestingly, the polymer could continuously diffuse through the interface and induce additional reactions, which allowed the graphene-based composite to develop into thick multi-layered structures. Hence, we named this process 'diffusion driven layer-by-layer assembly'," explained Jianli Zou, a co-investigator in the project. The resulting products display a foam-like porous structure, ideal for maximizing the benefits of graphene, with the porosity tunable from ultra-light to highly dense through simple changes in experimental conditions. Furthermore, the process is easily scalable for creating large-area films which will be highly useful as electrodes and membranes for energy generation or storage. "While we have only demonstrated the construction of graphene-based structures in this study, we strongly believe that the new technique will be able to serve as a general method for the assembly of a much wider range of nanomaterials," concluded Franklin Kim, the principal investigator of the study.
Related Links Institute for Integrated Cell-Material Sciences, Kyoto University Space Technology News - Applications and Research
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |