Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Goldilocks principle wrong for particle assembly
by Staff Writers
New York NY (SPX) Oct 21, 2014


Microscopic particles that bind under low temperatures (blue: bottom left) will melt as temperatures rise to moderate levels (green: center), but re-connect under hotter conditions (red: top right), a team of NYU scientists has found. Their discovery points to new ways to create "smart materials," cutting-edge materials that adapt to their environment by taking new forms, and to sharpen the detail of 3-D printing. Image courtesy of Lang Feng.

Microscopic particles that bind under low temperatures will melt as temperatures rise to moderate levels, but re-connect under hotter conditions, a team of New York University scientists has found. Their discovery points to new ways to create "smart materials," cutting-edge materials that adapt to their environment by taking new forms, and to sharpen the detail of 3D printing.

"These findings show the potential to engineer the properties of materials using not only temperature, but also by employing a range of methods to manipulate the smallest of particles," explains Lang Feng, the study's lead author and an NYU doctoral student at the time it was conducted.

The research, which appears in the journal Nature Materials, reveals that the well-known Goldilocks Principle, which posits that success is found in the middle rather than at extremes, doesn't necessarily apply to the smallest of particles.

The study focuses on polymers and colloids-particles as small as one-billionth and one-millionth of a meter in size, respectively.

These materials, and how they form, are of notable interest to scientists because they are the basis for an array of consumer products. For instance, colloidal dispersions comprise such everyday items as paint, milk, gelatin, glass, and porcelain and for advanced engineering such as steering light in photonics.

By better understanding polymer and colloidal formation, scientists have the potential to harness these particles and create new and enhanced materials-possibilities that are now largely untapped or are in relatively rudimentary form.

In the Nature Materials study, the researchers examined polymers and larger colloidal crystals at temperatures ranging from room temperature to 85 degrees C.

At room temperature, the polymers act as a gas bumping against the larger particles and applying a pressure that forces them together once the distance between the particles is too small to admit a polymer.

In fact, the colloids form a crystal using this process known as the depletion interaction-an attractive entropic force, which is a dynamic that results from maximizing the random motion of the polymers and the range of space they have the freedom to explore.

As usual, the crystals melt on heating, but, unexpectedly, on heating further they re-solidify. The new solid is a Jello-like substance, with the polymers adhering to the colloids and gluing them together. This solid is much softer, more pliable and more open than the crystal.

This result, the researchers observe, reflects enthalpic attraction-the adhesive energy generated by the higher temperatures and stimulating bonding between the particles. By contrast, at the mid-level temperatures, conditions were too warm to accommodate entropic force, yet too cool to bring about enthalpic attraction.

Lang, now a senior researcher at ExxonMobil, observes that the finding may have potential in 3D printing. Currently, this technology can create 3D structures from two-dimensional layers. However, the resulting structures are relatively rudimentary in nature. By enhancing how particles are manipulated at the microscopic level, these machines could begin creating objects that are more detailed, and realistic, than is currently possible.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
New York University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
A simple and versatile way to build 3-dimensional materials of the future
Kyoto, Japan (SPX) Oct 20, 2014
Researchers in Japan have developed a novel yet simple technique, called "diffusion driven layer-by-layer assembly," to construct graphene into porous three-dimensional (3D) structures for applications in devices such as batteries and supercapacitors. Their study was recently published in the journal Nature Communications. Graphene is essentially an ultra-thin sheet of carbon and possesses ... read more


TECH SPACE
Goldilocks principle wrong for particle assembly

LockMart Team Delivers Lightning Mapper Instrument For Weather Satellite

A simple and versatile way to build 3-dimensional materials of the future

SSL Begins Post-Launch Maneuvers For Intelsat 30

TECH SPACE
Thales providing satcom capability to Qatar

Development of software for electronic warfare resumes

GD's MUOS-Manpack PRC-155 Radio Connects USAF Aircraft to Ops Center

Northrop Grumman Debuts Low-Cost Terminals To Protect US Warfighters

TECH SPACE
China Completes Country's Largest Spaceport

Argentina launches geostationary satellite

Arianespace's December mission for DIRECTV-14 and GSAT-16 satellites in process

Inquiry reveals design stage shortcoming in Galileo navigation system

TECH SPACE
Galileo duo handed over in excellent shape

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

ISRO to Launch India's Third Navigation Satellite on October 16

Russian Phone Operators Could Become GLONASS Shareholders

TECH SPACE
Australia's Tiger armed recon helicopters getting upgrade

New Zealand updating Super Seasprite helicopter training systems

Maintenance, upgrade work on Italian aircraft carrier ahead of schedule

Jordanian Air Force helicopter pilots to train on Robinson aircraft

TECH SPACE
Researchers develop world's thinnest electric generator

Australian teams set new records for silicon quantum computing

A novel platform for future spintronic technologies

Future computers could be built from magnetic 'tornadoes'

TECH SPACE
NASA Tool Helps Airliners Minimize Weather Delays

Sophisticated Sensor Will Give NOAA Earlier Warnings of Severe Storms

Chinese scientist proposes new scientific satellites

NASA Begins Sixth Year of Airborne Antarctic Ice Change Study

TECH SPACE
US hid troop exposure to chemical agents in Iraq: report

Days of heavy air pollution blight northern China

Nanoparticles Accumulate Quickly in Wetland Sediment

New study explains wintertime ozone pollution in Utah oil and gas fields




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.