Subscribe to our free daily newsletters
  Space Industry and Business News  




Subscribe to our free daily newsletters



AF Engineers Create Thermal Control System For Space Use

Two active thermal management surfaces and four passive coatings packaged on the Materials (on the) International Space Station Experiment-6 flight module are shown. Air Force Research Laboratory engineers at Wright-Patterson Air Force Base, Ohio, have successfully integrated two existing technologies to create a thermal emission management system suitable for space use. (Courtesy photo)
by Heyward Burnette
Air Force Research Laboratory Materials and Manufacturing Directorate
Wright-Patterson AFB OH (AFNS) Jun 18, 2008
Air Force Research Laboratory engineers here have successfully integrated two existing technologies to create a thermal emission management system suitable for space use.

Achieving operationally responsive space capabilities requires versatile satellites that can adapt as needed to accomplish multiple missions, and an integral part of such adaptable satellites is a thermal control system enabling real-time, on-orbit temperature control of the spacecraft.

In maintaining appropriate spacecraft temperature, the system ensures proper functioning of onboard equipment. AFRL's newly developed thermal emission management system is particularly well-suited for space deployment, since it requires very little power, is compact and has minimal data storage requirements.

Active thermal management devices generally rely on heaters and mechanical refrigerators to control spacecraft temperature. While these active systems can achieve real-time temperature changes to protect spacecraft from extreme environments, they unfortunately require power supplies and are complex and heavy.

Conversely, AFRL's new technology not only requires little operating power, but weighs considerably less than state-of-the-art active control systems. The integrated device also offers the advantage of on-demand switching between passive and active thermal control.

In creating the efficient new thermal control capability, AFRL engineers paired two technologies developed under separate Small Business Innovation Research contracts. Specifically, the new system combines the functionality of a Sensortek, Inc., electrostatic radiator, or ESR, device with a heat-flux-based emissivity measuring method developed by Advanced Thermal and Environmental Concepts, Inc.

After merging the two technologies, AFRL engineers mounted the resultant device inside a large vacuum chamber in order to test it in a simulated space environment. Upon obtaining a steady-state temperature, the test team supplied voltage to one side of the ESR structure, causing the membrane to draw down into contact with the ESR structure's rigid surface.

The embedded heat flux sensor demonstrated a very fast response time, so the engineers were able to monitor the hybrid device's emissivity throughout the temperature change. The results acquired from the ESR structure reflected significant differences in emissivity values -- such large differences are a requirement for systems designed to facilitate a wide range of active thermal control.

Subsequent to these successful tests, the AFRL-developed device underwent incorporation into the Materials (on the) International Space Station Experiment-6, or MISSE-6, assembly, launched earlier this year aboard the Space Shuttle Endeavor. MISSE-6 mission results will aid scientists in determining the new system's viable use for official missions.

Related Links
the missing link Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Students Prepare For Dust Up In Space
Leicester, UK (SPX) Jun 11, 2008
Undergraduates at the University of Leicester are on target to design, build and launch a student satellite on a real space mission. They have taken delivery of the main body of the satellite donated by Loughborough-based engineering company Magna Parva.







  • Lower costs drawing users to mobile Internet: industry
  • Ships Face Loss Of Broadband Cover
  • Analysis: Crackdown on domain name crooks
  • Pacific students lagging in computer age: researcher

  • Russia Starts Equipment Delivery For Kourou Space Center On July 10
  • ProtoStar One Is Fueled For Its Launch From Kourou
  • Ariane 5 Lofts Twin Birds For European Defense And Turkish TV
  • OSTM-Jason 2 Satellite Ready For June 20 Launch From California

  • The Tu-144: The Future That Never Was
  • China's new jumbo-jet firm no threat to Airbus, Boeing: state media
  • China unveils new jumbo jet company: report
  • NASA And JAXA To Conduct Joint Research On Sonic Boom Modeling

  • Harris To Supply More Multiband Terminal For For US Navy Satellite Program
  • Launch Of British Military Satellite Makes It A Skynet Hat-Trick
  • SAIC Awarded Contract From DARPA To Support Deep Green Program
  • An AFSCN Legacy Satellite Control System's Last Stand

  • AF Engineers Create Thermal Control System For Space Use
  • Students Prepare For Dust Up In Space
  • Microsoft Surface computers hit Las Vegas party scene
  • Measuring How Much Information There Is In The World

  • Globalstar AppointS Thomas Colby Chief Operating Officer
  • SES AMERICOM Announces Change In Executive Management
  • Bill Flynn Joins Americom Government Services to Lead Navy Programs
  • NASA names science directorate deputy

  • NMSU Uses Information Collected In Space To Help Those On The Ground
  • Aster Images Sichuan Earthquake In China
  • Japanese astronaut says Earth is 'beautiful'
  • EarthCARE Earthcare Satellite Contract Signed

  • Honeywell To Provide Electronic Navigation For Future Soldier Program
  • GPS footwear And FindU Enter The CIS
  • NAVTEQ and Radio Shack Team Lead Development Of PND Market In Mexico
  • National Instruments Introduces New LabVIEW Toolkit For GPS Receiver Testing

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement