Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
Zooming in on an individual orbiting electron
by Staff Writers
Santa Barbara CA (SPX) May 09, 2015


This spectrogram shows a single elctron losing energy and orbiting faster as it radiates. Image courtesy UCSB. For a larger version of this image please go here.

The microwave oven has been around for almost 80 years. When it heats food or liquid, the frequency of electrons increases but their energy slows down due to their own microwave emissions. Until now, scientists have only been able to observe this phenomenon in a group of electrons.

However, Project 8, a collaboration of 27 scientists from six institutions in the United States and Germany, has for the first time been able to detect the frequency of radiation emitted by an individual, orbiting electron. The group's findings appear in the journal Physical Review Letters.

"One of the reasons our result is exciting is that it gives us a new way of capturing electrons to use as a back door into studying neutrinos," said Benjamin Monreal, an assistant professor in UC Santa Barbara's Department of Physics. "We hope it will lead to a measurement of the neutrino mass, which is currently one of the last remaining unknowns in the Standard Model of particle physics."

The second-most abundant particles in the universe, neutrinos lack an electric charge and are produced by the decay of radioactive elements. They come in three varieties: electron, muon and tau, each with a different, still-unknown mass. While the differences between the mass of each type of neutrino can be calculated, scientists at this point in time only know the range into which measurement of these masses will fall. Once refined, the technique developed by Project 8 has the potential to make the first direct measurement of the mass of the neutrino.

Previous electron detection and energy measurements required enormous spectrometers to measure radiation. Project 8 collaborators may have changed that. Not only were they able to detect emissions from a single electron but they did so using a tabletop instrument.

The team built a small apparatus to contain a single high-energy electron in a magnetic field containing krypton-83, a radioactive isotope that produces electrons as its nuclei undergo beta decay. Electrons from the radioactive decay move extremely fast, at 20 percent of the speed of light, and spiral in a magnetic field. Each electron emits a signal that can be measured very accurately using radio waves.

Called cyclotronic radiation, this effect was predicted more than 100 years ago but has only now been observed one electron at a time. In fact, the team was able to witness the activity of more than 100,000 single electrons.

"We were able to trap an electron for about 10 milliseconds, which doesn't sound like very long," Monreal said, "but it's actually taking a little 30-kilometer journey going around and around in circles. Nobody's ever been able to zoom in on a single electron before."

When the electron bumps into a gas molecule, it jumps and loses a fraction of its energy, which in turn increases its frequency. This sequence of events produces a characteristic chirp, which can be seen when frequency is plotted against time.

"We were able to take a single electron and see it scatter 20 times and measure every little energy change," Monreal said. "Sometimes we could see it changing directions slightly."

According to Monreal, Project 8 has found a new use of basic electromagnetism. The equation used by the investigators was first published in 1904. "It's very, very old electromagnetism that we're just pushing to the edge of the smallest charge that you can see with it," Monreal explained.

"We have a new tool for studying radioactive decays," he added. "For the future, the decay we're most interested in is tritium, which is a radioactive isotope of hydrogen. Every time it decays, it emits an electron and a neutrino and you can detect those electrons. One day our instrument will be able to measure those electrons. If you can measure electron distribution precisely enough, you can figure out neutrino mass, which we've been talking about for 80 years now."

Measuring neutrino mass may be the ultimate goal of Project 8, but the team's method also has the potential to be used for environmental monitoring of nuclear fuel.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Barbara
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Quantum-mechanical monopoles discovered
Espoo, Finland (SPX) May 09, 2015
Researchers at Aalto University (Finland) and Amherst College (USA) have observed a point-like monopole in a quantum field itself for the first time. This discovery connects to important characteristics of the elusive monopole magnet. The results were just published in Science magazine. The researchers performed an experiment in which they manipulated a gas of rubidium atoms prepared in a ... read more


TIME AND SPACE
Researchers match physical and virtual atomic friction experiments

See flower cells in 3-D - no electron microscopy required

Northwestern scientists develop first liquid nanolaser

Rubber from dandelions

TIME AND SPACE
French-Italian military communications satellite launched

Harris wins IDIQ contract for Rifleman Radio

U.S. Special Operations Command orders MUOS-capable radios

Thales supplying intercoms for Australian military vehicles

TIME AND SPACE
ILS And Dauria announce Proton/Angara dual launch services agreement

SpaceX to test 'eject-button' for astronauts

India to launch 6 more satellites in 2015-16

Arianespace to launch HellaSat-4/SGS-1 for Arabsat and KACST

TIME AND SPACE
Next Generation GPS System Faces Delays, Cost Overruns

Neuronal positioning system: A GPS to navigate the brain

NASA Goddard Team Sets High Flying Record with Use of GPS

China's satellite navigation system to expand coverage globally by 2020

TIME AND SPACE
France, India pledge swift conclusion to fighter jet deal

Boeing supplying P-9A training gear to U.S. Navy, Australia

NASA tests 10-engine electric airplane

India defence minister wants swift deal on French Rafale jets

TIME AND SPACE
Two-dimensional semiconductor comes clean

Defects in atomically thin semiconductor emit single photons

Researchers develop acoustically driven controls for smartphones

Printing silicon on paper, with lasers

TIME AND SPACE
Dull forest glow yields orbital tracking of photosynthesis

Technologies enable ambitious MMS mission

Nepal earthquake on the radar

Egyptian Space Authority Denies Losing Control of EgyptSat Two Satellite

TIME AND SPACE
Greenpeace says India office may close within a month

US-backed drug spraying triggers health fears in Colombia

Hungary orders clean-up of 'catastrophic' disused chemical plant

Chemical spill had 'no impact on health': Costa Rica




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.