Subscribe free to our newsletters via your
. Space Industry and Business News .




ENERGY TECH
X-rays reveal another feature of high-temperature superconductivity
by Staff Writers
Stuttgart, Germany (SPX) Nov 28, 2013


This image shows Mathieu Le Tacon (foreground) and Alexei Bosak (background) mounting a sample on beamline ID28 of the ESRF where the X-ray experiments were performed. Credit: ESRF/Blascha Faust.

Classical and high-temperature superconductors differ hugely in the value of the critical temperatures at which they lose all electrical resistance. Scientists have now used powerful X-rays to establish another big difference: high-temperature superconductivity cannot be accounted for by the mechanism that leads to conventional superconductivity.

As this mechanism called "electron-phonon coupling" contributes only marginally to the loss of electrical resistance, other scenarios must now be developed to explain high-temperature superconductivity. The results are published on 24 November 2013 in Nature Physics.

The team of scientists was led by Mathieu Le Tacon and Bernhard Keimer from the Max-Planck-Institute for Solid State Research in Stuttgart (Germany) and comprised scientists from Politecnico di Milano (Italy), Karlsruhe Institute of Technology (KIT) and the European Synchrotron (ESRF) in Grenoble, France.

High-temperature superconductivity was discovered nearly thirty years ago and is beginning to find more and more practical applications. These materials have fascinated scientists since their discovery. For even more practical applications, the origin of their amazing properties must be understood, and ways found to calculate the critical temperature.

A key element of this understanding is the process that makes electrons combine into so-called "Cooper pairs" when the material is cooled below the critical temperature. In classical superconductors, these Cooper pairs are formed thanks to electron-phonon coupling, an interaction between electrons carrying the electrical current and collective vibrations of atoms in the material.

To understand the role this interaction plays in high-temperature superconductors, Matthieu Le Tacon and his colleagues took up the challenge to study these atomic vibrations as the material was cooled down below its critical temperature.

"Studying electron-phonon coupling in these superconductors is always a delicate task, due to the complex structure of the materials," says Alexei Bosak, an ESRF scientist and member of the team. He adds: "This is why we developed a two-level approach to literally find a needle in the hay stack".

The big surprise came once the electron-phonon coupling had been probed. "In terms of its amplitude, the coupling is actually by far the biggest ever observed in a superconductor, but it occurs in a very narrow region of phonon wavelengths and at a very low energy of vibration of the atoms", adds Mathieu Le Tacon.

"This explains why nobody could see it before the two-level approach of X-ray scattering was developed".

Because the electron-phonon coupling is in such a narrow wavelength region, it cannot "help" two electrons to bind themselves together into a Cooper pair. The next step will be to make systematic observations in many other high-temperature superconductors.

"Although we now know that electron-phonon coupling does not contribute to their superconductivity, the unexpected size of the effect-we call it giant electron-phonon-coupling-happens to be a valuable tool to study the interplay between superconductivity and other competing processes. This will hopefully provide further insight into the origin of high-temperature superconductivity, still one of the big mysteries of science", concludes Mathieu Le Tacon.

.


Related Links
European Synchrotron Radiation Facility
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
A Superconductor-Surrogate Earns Its Stripes
Berkeley CA (SPX) Nov 20, 2013
Understanding superconductivity - whereby certain materials can conduct electricity without any loss of energy - has proved to be one of the most persistent problems in modern physics. Scientists have struggled for decades to develop a cohesive theory of superconductivity, largely spurred by the game-changing prospect of creating a superconductor that works at room temperature, but it has proved ... read more


ENERGY TECH
Crippled space telescope given second life, new mission

Scientists create perfect solution to iron out kinks in surfaces

What might recyclable satellites look like?

Overcoming Brittleness: New Insights into Bulk Metallic Glass

ENERGY TECH
Boeing Tests Validate Performance of FAB-T Satellite Communications Program

Intelsat General To Provide Satellite Services To US Marines

Manpack Radios in Arctic Connect with MUOS Satellites Orbiting Equator

Self-correcting crystal may unleash the next generation of advanced communications

ENERGY TECH
Second rocket launch site depends on satellite size, cost-benefit

Private US launch of satellite delayed

Stepping up Vega launcher production

Czech and XCOR Sign Payload Integrator Agreement for Suborbital Flights

ENERGY TECH
CIA, Pentagon trying to hinder construction of GLONASS stations in US

GPS 3 Prototype Communicates With GPS Constellation

Russia to enforce GLONASS Over GPS

How pigeons may smell their way home

ENERGY TECH
US telling airlines to stay safe in East China Sea

The secrets of owls' near noiseless wings

Japanese airlines say will obey China's air zone rules

Peru boosts defense with tactical aircraft, helos

ENERGY TECH
Chips meet Tubes: World's First Terahertz Vacuum Amplifier

NIST demonstrates how losing information can benefit quantum computing

Chaotic physics in ferroelectrics hints at brain-like computing

Nature: Single-atom Bit Forms Smallest Memory in the World

ENERGY TECH
Cameras for high-res images of Earth's surface on way to space station

LETI Magnetometers Will Expand Understanding of Magnetic Field

Satellites to probe Earth's strange shield

Free access to Copernicus Sentinel satellite data

ENERGY TECH
Madrid street-sweepers call off strike: union

Everyday chemical exposure linked to preterm births

Albania refuses to host Syria arsenal destruction

Protests grow in Albania against Syria weapons destruction




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement