Subscribe free to our newsletters via your
. Space Industry and Business News .




SPACEWAR
Where is that spacecraft
by Staff Writers
Philadelphia PA (SPX) Sep 29, 2014


It is important to study uncertainty in the space surveillance tracking environment in order to protect space assets and maintain awareness of potentially adversarial space deployments.

Space surveillance is inherently challenging when compared to other tracking environments due to various reasons, not least of which is the long time gap between surveillance updates. "Unlike the air and missile defense environments where objects are frequently observed, the space surveillance environment data is starved, with many objects going several orbital periods between observations," according to researcher Joshua Horwood.

"Thus, it is more challenging to predict the future location of these sparsely-seen objects and they have a tendency to get lost using traditional methods. A new way of tracking them, the Gauss von Mises (GVM) distribution, has improved predictive capabilities that permit one to more effectively maintain custody of infrequently-observed space objects."

In a paper published in July in the SIAM/ASA Journal on Uncertainty Quantification, authors Horwood and Aubrey Poore, both of Numerica Corporation, propose a more statistically rigorous treatment of uncertainty in the near-Earth space environment than currently available. The method proposed is a new class of multivariate probability density functions, called the Gauss von Mises (GVM) family of distributions.

"By more faithfully representing the uncertainty in a space object's orbit, the GVM distribution allows one to more accurately predict the future locations of satellites and debris," says Horwood.

"Uncertainty propagation using the GVM distribution can be achieved at a computational cost commensurate with traditional methods and can maintain a proper characterization of the uncertainty for up to eight times as long."

It is important to study uncertainty in the space surveillance tracking environment in order to protect space assets and maintain awareness of potentially adversarial space deployments.

The proper characterization of uncertainty enables us to allocate resources in order to gain as much information about the system as possible, and detect satellite maneuvers. Better uncertainty quantification also helps us track and look for close approaches between any two space objects, a process called conjunction analysis.

Horwood explains further with an example, "In the problem of conjunction analysis, the use of the GVM distribution can provide a more reliable probability of collision and allows conjunction assessments further into the future. This translates into fewer false alarms and hence fewer expensive maneuver operations that have to be performed on operational spacecraft."

In order to quantify uncertainty, proper characterization of a space object's full state probability density function (PDF) is required to faithfully represent the statistical errors. The GVM distribution approach is supported by a suite of next-generation algorithms for uncertainty propagation, data association, space catalog maintenance, and other space situational awareness functions.

What distinguishes the GVM distribution is that it is defined on a cylindrical manifold, and such coordinates, used in conjunction with the GVM distribution, can provide a statistically rigorous treatment of uncertainty needed for orbit determination and tracking.

Methods proposed in this paper will be beneficial for studying various aspects of future space surveillance. "A quantification of the uncertainties in space surveillance is a prerequisite for robustly tracking hundreds of thousands of space objects that are expected in the future," says Horwood.

"This involves various levels of research including sensor-level processing (to improve the characteristics of the measurement errors and biases), propagation of uncertainty, dynamics and space environment modeling, inverse problems such as statistical orbit determination, and high performance computing to serve the growing space catalog."

.


Related Links
Society for Industrial and Applied Mathematics
Military Space News at SpaceWar.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACEWAR
AFSPC Commander advocates defending space superiority
Washington DC (SPX) Sep 22, 2014
The Commander of Air Force Space Command Gen. John Hyten charged the Air Force to defend its position and remain on the cutting edge of international space operations during the 2014 Air Force Association's Air and Space Conference and Technology Exposition here Sept. 16. Of air, space and cyberspace, AFSPC remains directly responsible for the latter two of the Air Force's three warfightin ... read more


SPACEWAR
France taps Thales for radar antenna research project

Fed Up With Federal Inaction, States Act Alone on Cap-and-Trade

Microsoft to tap $2-trillion Indian cloud market

How to make stronger, 'greener' cement

SPACEWAR
'Space bubbles' may have aided enemy in fatal Afghan battle

Space control Airmen ensure constant communication

Russian Aerospace Defense Forces Again Dismiss Satellite Explosion Rumors

Harris Corporation supplying radios to Air Force Special Operations Command

SPACEWAR
Arianespace's lightweight Vega launcher is readied for its mission with the European IXV spaceplane

Soyuz Rocket Awaiting Launch at Baikonur Cosmodrome

Elon Musk, Rick Perry attend groundbreaking for Texas spaceport

France raises heat on decision for next Ariane rocket

SPACEWAR
Russia Unable To Reject Foreign Parts in GLONASS Satellites

Talks Over GLONASS Station Locations in US on Hold

Sam Houston State study examines use of GIS in policing

Western Sanctions Fail to Impede GLONASS Satellite Production

SPACEWAR
Boeing relocating jobs from Washington State

Thailand asks approval of helicopter sale

Embraer completes first A-29 for USAF program

Search for MH370 to enter new phase

SPACEWAR
Intel to buy stake in two Chinese firms

New discovery could pave the way for spin-based computing

Future flexible electronics based on carbon nanotubes

University of Utah engineers unlock potential for faster computing

SPACEWAR
NASA photos shows vanishing Aral Sea

Suomi Data Used for Mitigating Aviation Related Volcanic Hazards

With Few Data, Arctic Carbon Models Lack Consensus

NASA Launches RapidScat Wind Watcher to ISS

SPACEWAR
California becomes first US state to ban plastic bags

EU wants Greece fined over toxic waste

Researchers develop unique waste cleanup for rural areas

US tests for toxic spill from Mexico mine




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.