Subscribe free to our newsletters via your
. Space Industry and Business News .




BIO FUEL
When green algae run out of air
by Staff Writers
Bochum, Germany (SPX) Jun 25, 2013


Liquid cultures of the green alga Chlamydomonas in the absence of air. The red rubber stoppers prevent air from entering and other gases such as hydrogen from escaping the flasks. Image courtesy AG Photobiotechnologie, RUB.

When green algae "can't breathe", they get rid of excess energy through the production of hydrogen. Biologists at the Ruhr-Universitat Bochum have found out how the cells notice the absence of oxygen. For this, they need the messenger molecule nitric oxide and the protein haemoglobin, which is commonly known from red blood cells of humans. With colleagues at the UC Los Angeles, the Bochum team reported in the journal "PNAS".

In the human body, haemoglobin transports oxygen from the lungs to the organs and brings carbon dioxide, which is produced there, back to the lungs. "However, scientists have known for years that there is not just the one haemoglobin", says Prof. Thomas Happe from the Work Group Photobiotechnology.

Nature has produced a large number of related proteins which fulfil different functions. The green alga Chlamydomonas reinhardtii has what is known as a "truncated" haemoglobin, the function of which was previously unknown. Happe's team has deciphered its role in surviving in an oxygen-free environment.

In an oxygen-free environment, the green alga activates specific genes

When Chlamydomonas has no oxygen available, the algae transfer excess electrons to protons, creating hydrogen (H2). "For this to work, the green alga activates a certain gene programme and creates many new proteins", Happe explains. "But how exactly the cells even notice that oxygen is missing is something we did not know."

The research team looked for genes that are particularly active when green algae have to live without oxygen - and found a gene that forms the blueprint for a haemoglobin. In an oxygen-rich environment, however, this gene was completely idle.

A haemoglobin and nitric oxide help green algae to survive
The scientists studied the haemoglobin protein and its genetic blueprint in more detail using molecular biological and biochemical analyses. "One thing became clear very quickly", says Dr. Anja Hemschemeier from the Work Group Photobiotechnology. "Algae in which we switched this gene off could hardly grow without oxygen."

From previous studies it is known that in many organisms, haemoglobin detoxifies nitric oxide, because an overdose of this gas poisons the cells. The biologists therefore tested whether green algae which are no longer able to form haemoglobin after genetic manipulation die of nitric oxide poisoning.

Their expectations: the green algae should fare better if the gas is removed using a chemical scavenger. "Surprisingly, then the algae were not able to grow at all", says Hemschemeier. The researchers concluded that, under oxygen-free conditions, haemoglobin and nitric oxide are in cahoots.

Nitric oxide signals: "no oxygen!"
Nitric oxide acts in many living organisms as a signalling molecule - apparently also in green algae. Experiments in vitro have shown that the green algal haemoglobin interacts with nitric oxide. When the researchers artificially introduced the gas to the single cell organisms, certain genes became active that are otherwise only "turned on" in the absence of oxygen.

"From all this data we can conclude that Chlamydomonas uses nitric oxide to pass on the 'no oxygen!' signal within the cell, and that our haemoglobin is involved in this process", Happe sums up. His team wants to go on exploring the role of this protein in green algae, as the biologists have discovered another eleven haemoglobin genes in the organism.

"Now things are really getting going", says the Bochum scientist. "The map of haemoglobin research has many blank spots that we want to fill with content. The fact that a single cell requires twelve haemoglobin proteins indicates that these fulfil finely tuned functions in the cell."

A. Hemschemeier, M. Duner, D. Casero, S.S. Merchant, M. Winkler, T. Happe (2013): Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide, Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1302592110

.


Related Links
Ruhr-University Bochum
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Novel cellulose structure requires fewer enzymes to process biomass to fuel
Los Alamos NM (SPX) Jun 24, 2013
Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production and the subject of new research from Los Alamos National Laboratory (LANL) and the Great Lakes Bioenergy Research Center (GLBRC). Scientists are investigating the unique properties of crystalline cellulose nanofibers to develop novel chemical pretreatments and designer enzymes for biofuel pro ... read more


BIO FUEL
Noble gases hitch a ride on hydrous minerals

'Chemical architects' build materials with potential applications in drug delivery and gas storage

Researchers Propose New Method for Achieving Nonlinear Optical Effects

Unexpected behavior of well-known catalysts

BIO FUEL
Northrop Grumman Provides Fuel Quantity Indicator For E-3D AWACS

Canada Makes First Call On AEHF

Mutualink Deploys Full Range of Communications Capabilities

Mutualink Enables New Global Interoperable Communications Network for Large-Scale Multinational Events

BIO FUEL
Four O3b Network birds integrated to Arianespace Soyuz launcher

Arianespace will retain its market leadership by building on the company's flexibility and agility

Plan for modified European rocket gets backing

Peru launches first homemade rocket

BIO FUEL
Raytheon's latest air traffic management systems go into continuous operation

Raytheon's Satellite Air Navigation System marks 10 years of continuous service in the US

Raytheon unveils Excalibur with dual-mode guidance

Northrop Grumman to Offer Improved GPS-Challenged Navigation and Geo-Registration Solution for USAF

BIO FUEL
Airbus shows off new military transport plane

India's Avro replacement fails to lift off

F-35 costs kick up more controversy outside U.S.

US to sell military helicopters to Thailand

BIO FUEL
Making memories: Practical quantum computing moves closer to reality

Samsung unveils hybrid Windows/Android tablet/laptop

Northrop Grumman Develops New Gallium Arsenide E-Band High-Power Monolithic Microwave Integrated Circuits

New Additive Offers Near-Perfect Results as Nucleating Agent for Organic Semiconductors

BIO FUEL
Vegetation as Seen by Suomi NPP

How did a third radiation belt appear in the Earth's upper atmosphere

Arianespace to launch Gokturk-1 high-resolution observation satellite

Cassini Probe to Take Photo of Earth From Deep Space

BIO FUEL
Indonesia steps up firefighting, Malaysia still in smog

Singapore's economy starts to choke on Indonesia smoke

Shipping firms warn of haze danger in Malacca Strait

Indonesia begins cloud-seeding to fight haze




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement