![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Panama City, Panama (SPX) Apr 06, 2018
Black plague killed between 30 to 50 percent of people worldwide. The cause, Yersinia pestis, is still around, but people are not dying of the plague. An even more devastating modern disease caused by the chytrid fungus wiped entire frog and salamander populations off the map. New results from work at the Smithsonian Tropical Research Institute (STRI) in Panama published in the Mar. 29 edition of Science, reveal the outcomes of the chytridiomycosis epidemic and their implications for diseases of mass destruction. "Imagine a deadly disease that affects not only humans but other mammal species like dogs, cats and cows," said Roberto Ibanez, STRI staff scientist and in-country director of the Panama Amphibian Rescue and Conservation Project. "Chytridiomycosis kills off most of the individuals in many different species of amphibians, but for some species it stops short of driving them to complete extinction." "We were lucky that Karen Lips, now at the University of Maryland in College Park and colleagues saw this epidemic coming into Panama from Costa Rica, and researchers were able to study both the frogs and the disease before, during and after the peak of the epidemic," Ibanez said. Disease outbreaks rarely annihilate the host species, because pathogens need their hosts in order to survive and reproduce. "Because we have pathogen and host samples from before, during and after the epidemic, we can ask whether some frogs survived because the pathogen grew weaker through time, or because the frogs' immune systems or resistance increased through time," said Jamie Voyles, disease ecologist at the University of Nevada, Reno, and first author of the paper. The authors tracked changes in amphibian species numbers and communities, infection patterns, host resistance and pathogen virulence for several decades hoping to see evidence of a weaker pathogen and/or of host resistance. The disease-causing fungus, Batrachochytrium dendrobatidis, appeared in El Cope, Panama, in 2004, in El Valle in 2006 and in Campana National Park in 2007. Between five and 13 years after the epidemic, the authors saw evidence of some recovery in nine species, but the fungus was still present. However, not all frog species rebounded, some species are still missing. There was no evidence that the pathogen grew more slowly, responded differently to skin secretions from the frogs or became less virulent. However, skin secretions from wild frogs that survived the epidemic inhibited growth of the fungus significantly more than secretions from frogs moved into captive breeding programs before the disease arrived. Researchers think that wild frogs became more resistant to the disease. "The Panama Amphibian Rescue and Conservation Project collected healthy frogs before the outbreak," Ibanez said. "We learned to breed them in captivity and are now releasing Atelopus varius in areas where the epidemic has passed, so it is extremely important for us to realize that the defenses of these frogs may be weaker than the defenses of frogs that survived the epidemic in the wild. Captive breeding programs must consider breeding and releasing frogs with stronger defenses, and testing their skin secretions against the fungus is one useful tool to see which frogs are more resistant." As in other pathogens that infect multiple species, the chytrid fungus poses a threat to amphibians, the cytrid fungus poses a threat to amphibians, increasing the likelihood of extinction of some species. It is vital to understand how disease transitions work - from outbreak, to epidemic, to coexistence - and our results have implications for a skyrocketing human population facing emerging diseases with the potential to cause global pandemics," said Ibanez.
![]() ![]() Palaeontologists investigate the macabre science behind how animals decay and fossilize Leicester UK (SPX) Apr 04, 2018 New research has revealed how the history of life can be distorted by the ways animals decompose and lose body parts as they decay - and the ways in which decayed bodies ultimately become fossilised. In a new study published in the journal Palaeontology, a group of palaeontologists from the UK and Ireland, led by the University of Leicester, has followed a macabre, and nasally-challenging road to knowledge - watching carefully as animal carcasses decompose in order to better understand the process ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |