Space Industry and Business News  
Western-Led Research Studies Ozone, Good And Bad

The research was conducted by releasing balloon-borne, ozone-detecting instruments into the skies above Quebec and Ontario, while measuring tropopause height using windprofilers.
by Staff Writers
London, Canada (SPX) Nov 09, 2007
Depending on its altitude, ozone can be either friend or foe. Thanks to new research led by The University of Western Ontario, scientists will now have a better understanding of ozone, its origin and the role - good or bad - it plays in polluting our atmosphere. Ozone is a colourless, toxic gas named for the Greek word for smell because of its pungent odour.

In the stratosphere, acting as friend, it forms the ozone layer, which fends off harmful ultraviolet solar rays.

During pollution events, ozone turns to foe as it interacts with other pollutants, effectively generated by factories, cars and machinery, and descends from the stratosphere into the troposphere (the lowest layer of the atmosphere), where the ozone itself becomes a pollutant that damages forests, crops and human health.

In this week's Nature, "the world's leading scientific journal," a study led by Western physics and astronomy professor Wayne Hocking reveals new discoveries about how ozone moves through our skies and how so-called "ozone intrusions" from higher altitudes can be monitored using a relatively simple radar instrument called a "windprofiler."

The research suggests that "ozone-intrusion events" are associated with relatively sudden changes in the altitude of the boundary between the troposphere and the stratosphere (called the tropopause), which is usually found at an altitude of eight to 12 kilometres.

"We often blame humankind for the problems associated with the ozone layer and ozone pollution, and indeed we have to take responsibility for some significant effects, but this research shows that sometimes the effects we see are just nature in action," said Hocking, who leads Western's Atmospheric Dynamics Group, a research team that studies dynamical motions in the atmosphere at heights from ground level to 100 kilometres altitude.

The research was conducted by releasing balloon-borne, ozone-detecting instruments into the skies above Quebec and Ontario, while measuring tropopause height using windprofilers.

Related Links
University of Western Ontario
All about the Ozone Layer



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Initial Measurements From GOME-2 Show No Substantial Recovery In The Ozone Hole
Darmstadt, Germany (SPX) Oct 11, 2007
Every year in the southern hemisphere spring, a considerable chemical reduction in ozone is observed in the lower and middle stratosphere, which extends from 10 to 15 kilometres high. The term "ozone hole" was coined to describe this phenomenon. Its expansion shows strong annual progression. Its size has varied considerably over the years, but the ozone layer shows no signs of overall recovery. This was the discovery of scientists from the German Aerospace Center (DLR) when they analysed data from the EUMETSAT MetOp Earth monitoring satellite.







  • Electricity Grid Could Become A Type Of Internet
  • Google revs up profits as advertising revenues soar
  • Internet preparing to go into outer space
  • US cities' Wi-Fi dreams fading fast

  • Arianespace's 5th Ariane 5 Mission Is Cleared For November 9 Liftoff
  • ESA To Provide Essential Launch Control Services To EUMETSAT
  • Skynet 5B Satellite Ready For Launch On 9th November
  • China May Use Long March 3 For Lunar Landing

  • Virgin to offer carbon offsets alongside drinks and perfume
  • NASA sorry over air safety uproar
  • Airbus superjumbo makes first commercial flight
  • Airbus superjumbo takes off on first commercial flight

  • Space Command Striving For Improved Field Communications
  • Most Complex Silicon Phased Array Chip In The World
  • Lockheed Martin Completes Major Test Of First Advanced Military Communications Satellite
  • Raytheon Teams With Industry Best To Pursue Army Satellite Communications Program

  • YES2 Team Claims A Space Tether World Record
  • NASA Unveils New Antenna Network
  • Northrop Grumman Awarded Patent For Innovative Payload Positioning System
  • Boeing Demonstrates One-Button Start-Up Of Satellite Ground Station

  • Boeing Names Darryl Davis To Lead Advanced Systems For Integrated Defense Systems
  • Northrop Grumman Names John Landon VP Of Missiles, Technology And Space Programs
  • Dr Mary Cleave Appointed To Board Of Directors Of Sigma Space
  • Northrop Grumman Appoints GPS And Military Space VPs

  • SPOT - The World's First Satellite Messenger Now Shipping
  • Fujifilm Unveils GPS-Based Data Tape Tracker
  • Vacation Photos Create 3D Models Of World Landmarks
  • NASA Data May Help Improve Estimates Of A Hurricane's Punch

  • GPS Chip Market Driven By Integration Into Mobile Devices Reports In-Stat
  • Hand Held Products Adds GPS To Industrial-Grade Mobile Computer
  • Fleet Management Solutions Launches GPS and Two-Way Satellite Asset Tracking Services Into 50th Country
  • Coach-Net Focuses On Safety Deploys deCarta Mapping Technology For Enhanced Service To Customers

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement