Space Industry and Business News  
CARBON WORLDS
Weird, water-oozing material could help quench thirst
by Staff Writers
Richland WA (SPX) Jun 16, 2016


PNNL researchers saw for the first time a phenomenon that was theorized more than 20 years ago. Shown here is a PNNL illustration of the phenomenon, "solvent cavitation under solvo-phobic confinement," which PNNL researchers saw occur with carbon-rich nanorods they mistakenly created. PNNL's viewing of the phenomenon involved liquid spontaneously evaporating after being confined within tiny spaces in between touching nanorods. Image from S. Nune et al, Nature Nanotechnology, 2016. Image courtesy Pacific Northwest National Laboratory. For a larger version of this image please go here.

After their nanorods were accidentally created when an experiment didn't go as planned, the researchers gave the microscopic, unplanned spawns of science a closer look. Chemist Satish Nune was inspecting the solid, carbon-rich nanorods with a vapor analysis instrument when he noticed the nanorods mysteriously lost weight as humidity increased. Thinking the instrument had malfunctioned, Nune and his colleagues moved on to another tool, a high-powered microscope.

They jumped as they saw an unknown fluid unexpectedly appear between bunches of the tiny sticks and ooze out. Video recorded under the microscope is shaky at the beginning, as they quickly moved the view finder to capture the surprising event again.

The team at the Department of Energy's Pacific Northwest National Laboratory would go on to view the same phenomenon more than a dozen times. Immediately after expelling the fluid, the nanorods' weight decreased by about half, causing the researchers to scratch their heads even harder.

A paper published in Nature Nanotechnology describes the physical processes behind this spectacle, which turned out to be the first experimental viewing of a phenomenon theorized 20-some years ago. The discovery could lead to a large range of real-world applications, including low-energy water harvesting and purification for the developing world, and fabric that automatically pulls sweat away from the body and releases it as a vapor.

"Our unusual material behaves a bit like a sponge; it wrings itself out halfway before it's fully saturated with water," explained PNNL post-doctoral research associate David Lao, who manufactured the material.

"Now that we've gotten over the initial shock of this unforeseen behavior, we're imagining the many ways it could be harnessed to improve the quality of our lives," said PNNL engineer David Heldebrant, one of the paper's two corresponding authors.

"But before we can put these nanorods to good use, we need to be able to control and perfect their size and shape," added Nune, the paper's other corresponding author.

Expectations v. reality
Ordinarily, materials take on more water as the humidity around them increases. But these carbon-rich nanorods - which the researchers mistakenly created while trying to fabricate magnetic nanowires - suddenly expelled a large amount of water as the relative humidity inside the specimen holder reached anywhere between 50 and 80 percent.

Water expulsion can clearly be seen in the microscope video. Water is visible as a gray, cloudy haze - and only emerges from where nanorods intersect. When the team went on to raise the humidity further, the nanorods' weight also increased, indicating they were taking on water again. It was also reversible, with water being ejected and later absorbed as humidity was gradually lowered back down.

The team was further intrigued. They couldn't think of any other material that takes on water at a low humidity and spontaneously releases it at a high humidity. So they dug through the canons of scientific literature to find an explanation.

Old theory, new evidence
They found a 2012 paper in the Journal of Physical Chemistry B that explained how, in certain situations where liquid is confined in a teeny-tiny space (roughly 1.5 nanometers wide), the liquid can spontaneously evaporate. And the authors of a 2013 paper in the (Journal of Chemical Physics described how water can condense into the confines of close hydrophobic materials, which do not play well with water, and quickly turn into vapor due to attractive forces between the surfaces of the two materials facing each other. The 2013 paper gave this phenomenon a very long, technical name: "solvent cavitation under solvo-phobic confinement."

These papers also noted the process was theorized as early as the 1990s by scientists examining crystallized proteins. Back then, scientists noticed they only saw water vapor surrounding hydrophobic sections of protein, while liquid water would surround other areas. The researchers proposed that there was some sort of process that enabled the water caught between hydrophobic protein sections to suddenly vaporize.

Armed with this knowledge, the PNNL team hypothesized water was condensing and forming a bridge between the nanorods, through a process known as capillary condensation. Next, they believe water between rods forms a curved cavity whose surface tension pulls the adjacent rods closer together. When two intersecting nanorods reach about 1.5 nanometers apart, the team reasoned, the water caught between them could be forced to quickly evaporate.

Putting it to good use
Though understanding the nanorods' unexpected behavior is a triumph in itself, the PNNL team also foresees a future where this phenomenon could also improve quality of life. They see their discovery as a potential humanitarian lifesaver, describing it as "a paradigm shift in water purification and separation," in their paper.

Theoretically, large quantities of the water-spitting nanomaterial could repeatedly take on and then eject collected water when a certain humidity level is reached. Such a system could be used in remote deserts, where it would collect water from the air and harvest it for human consumption.

Another vision is to create a membrane that takes on and later expels water as humidity changes. The membrane could be used in jacket fabrics and enable more comfortable outdoor adventures by removing sweat from inside a jacket and emitting it outside as a vapor.

To make these applications possible, the team is exploring ways to make more of its nanorods spray water. The team estimates only around 10 to 20 percent of the material spits water right now. The plan is to scale up production of the current material, creating more than a few grams of the material at a time. They will do further analysis to ensure the phenomenon is still present when larger amounts are present. They are also conducting a more detailed examination of the material's physical and chemical properties and determining if other materials that have similar properties. The team is also intrigued by the idea other nanomaterials could potentially be developed to collect other liquids, such as methanol.

Research paper: Satish K. Nune, David Lao, David J. Heldebrant, Jian Liu, Matthew J. Olszta, Ravi Kukkadapu, Lyle M. Gordon, Manjula I. Nandasiri, Greg Whyatt, Chris Clayton, David W. Gotthold, Mark H. Engelhard, Herbert T. Schaef, "Anomalous Water Expulsion from Carbon-Based Rods at High Humidity," Nature Nanotechnology, June 13, 2016, DOI: 10.1038/nnano.2016.91.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Pacific Northwest National Laboratory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
In a first, Iceland power plant turns carbon emissions to stone
New York NY (SPX) Jun 10, 2016
Scientists and engineers working at a major power plant in Iceland have shown for the first time that carbon dioxide emissions can be pumped into the earth and changed chemically to a solid within months - radically faster than anyone had predicted. The finding may help address a fear that so far has plagued the idea of capturing and storing CO2 underground: that emissions could seep back into t ... read more


CARBON WORLDS
Fighting virtual reality sickness

Cereal science: How scientists inverted the Cheerios effect

Can computers do magic?

New maths accurately captures liquids and surfaces moving in synergy

CARBON WORLDS
Saab debuts Giraffe 1X antenna at Eurosatory

Thales debuts new Synaps combat radio system

Air Force receives Rockwell Collins receivers

UK Looking to Design Next-Gen Military Satellites

CARBON WORLDS
MUOS-5 satellite encapsulated for launch

Airbus Safran Launchers confirms the maturity of the Ariane 6 launcher

Russian Proton-M Rocket Puts US Intelsat DLA-2 Satellite Into Orbit

US Senate reaches compromise on Russian rocket engines

CARBON WORLDS
Russian Glonass-M satellite reaches target orbit

And yet it moves: 14 Galileo satellites now in orbit

Arianespace continues the momentum for Europe's Galileo program on its latest Soyuz flight

China to launch 30 Beidou navigation satellites in next 5 years

CARBON WORLDS
Malaysia to host meeting on MH370 search plans

Modular, Adjustable: A Test Plane for Any Occasion

NASA highlights research in X-Planes and more at Aviation 2016

American Systems providing Air Force test and evaluation services

CARBON WORLDS
World-first pinpointing of atoms at work for quantum computers

Ferroelectric materials react unexpectedly to strain

Novel energy inside a microcircuit chip

Analogue quantum computation digitized using superconducting circuits

CARBON WORLDS
China's first high orbit remote sensing satellite put into use

Airbus Defence and Space has completed PeruSAT-1 in less than 24 months

Constraining the composition of Earth's interior with elasticity of minerals

Mapping that sinking feeling

CARBON WORLDS
Indonesia lashes out at Singapore in new haze row

How 'super organisms' evolve in response to toxic environments

Knowledge of chemical munitions dumped at sea expands from international collaboration

China probes school playing fields after kids sickened









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.