Space Industry and Business News
STELLAR CHEMISTRY
Webb makes first detection of crucial carbon molecule
These Webb images show a part of the Orion Nebula known as the Orion Bar. The largest image, on the left, is from Webb's NIRCam (Near-Infrared Camera) instrument. At upper right, the telescope is focused on a smaller area using Webb's MIRI (Mid-Infrared Instrument). At the very center of the MIRI area is a young star system with a protoplanetary disk named d203-506. The pullout at the bottom right displays a combined NIRCam and MIRI image of this young system.
Webb makes first detection of crucial carbon molecule
by Staff Writers
Baltimore MD (SPX) Jun 27, 2023

A team of international scientists has used NASA's James Webb Space Telescope to detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.

Carbon compounds form the foundations of all known life, and as such are particularly interesting to scientists working to understand both how life developed on Earth, and how it could potentially develop elsewhere in our universe. The study of interstellar organic (carbon-containing) chemistry, which Webb is opening in new ways, is an area of keen fascination to many astronomers.

The unique capabilities of Webb made it an ideal observatory to search for this crucial molecule. Webb's exquisite spatial and spectral resolution, as well as its sensitivity, all contributed to the team's success. In particular, Webb's detection of a series of key emission lines from CH3+ cemented the discovery.

"This detection not only validates the incredible sensitivity of Webb but also confirms the postulated central importance of CH3+ in interstellar chemistry," said Marie-Aline Martin-Drumel of the University of Paris-Saclay in France, a member of the science team.While the star in d203-506 is a small red dwarf, the system is bombarded by strong ultraviolet (UV) light from nearby hot, young, massive stars. Scientists believe that most planet-forming disks go through a period of such intense UV radiation, since stars tend to form in groups that often include massive, UV-producing stars.

Typically, UV radiation is expected to destroy complex organic molecules, in which case the discovery of CH3+ might seem to be a surprise. However, the team predicts that UV radiation might actually provide the necessary source of energy for CH3+ to form in the first place. Once formed, it then promotes additional chemical reactions to build more complex carbon molecules.

Broadly, the team notes that the molecules they see in d203-506 are quite different from typical protoplanetary disks. In particular, they could not detect any signs of water.

"This clearly shows that ultraviolet radiation can completely change the chemistry of a protoplanetary disk. It might actually play a critical role in the early chemical stages of the origins of life," elaborated Olivier Berne of the French National Centre for Scientific Research in Toulouse, lead author of the study.

These findings, which are from the PDRs4ALL Early Release Science program, have been published in the journal Nature.

Related Links
PDRs4ALL Early Release Science Program
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Molecular filament shielded young solar system from supernova
Tokyo, Japan (SPX) Jun 23, 2023
Isotope ratios found in meteorites suggest that a supernova exploded nearby while the Sun and Solar System were still forming. But the blast wave from a supernova that close could have potentially destroyed the nascent Solar System. New calculations shows that a filament of molecular gas, which is the birth cocoon of the Solar System, aided the capture of the isotopes found in the meteorites, while acting as a buffer protecting the young Solar System from the nearby supernova blast. Primitive mete ... read more

STELLAR CHEMISTRY
Astroscale expands operations to France and secures contract with CNES

NASA engineers help create a virtual world of data

Astroscale's ELSA-d Prepares for Controlled De-orbit in Final Mission Phase

Unveiling the secrets of liquid iron under extreme conditions

STELLAR CHEMISTRY
Ensuring reliable communications between US and Partners at the tactical edge

Luxembourg Parliament Approves MGS, Enabling NATO's Access to SES's O3b mPOWER System

Final Ariane 5 Flight Will Carry German Communications Satellite Into Space

OneWeb and Eutelsat demonstrate global connectivity solution to NATO

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Fugro and GomSpace deliver world class position and timing accuracy onboard LEO satellites

Northrop Grumman's new airborne navigation system achieves successful flight test

GMV to head up Galileo ground segment after securing a new contract

LEO PNT satellite signal simulator debuts at JNC 2023 conference

STELLAR CHEMISTRY
Ancillary project selects teams to develop initial concepts for VTOL X-Plane

NATO completes unprecedented European air drill

Russia says intercepted British warplanes over Black Sea

UK says fighter jets in Baltics scrambled 21 times over Russian aircraft

STELLAR CHEMISTRY
AI chip giant Nvidia 'extremely likely' to invest in Europe

Combining twistronics with spintronics could be the next giant leap in quantum electronics

Foxconn, Stellantis form joint venture to make car chips

Intel to invest up to $4.6 bn in new Poland chip site

STELLAR CHEMISTRY
China-funded prototype satellites delivered to Egypt

Maxar and Esri Expand Partnership to Visualize Precision3D in ArcGIS Living Atlas of the World

New Space companies join Copernicus

Innovation and investment propel Earth Observation industry to new heights

STELLAR CHEMISTRY
Hairy findings: chemicals study jolts French senators

Jumbo problem: Sri Lanka's battle with plastic pollution

The global battle against 'forever' chemicals'

'Time bomb'?: Race to identify health effects of microplastics

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.