Space Industry and Business News  
EXO WORLDS
Webb Telescope identifies origins of icy building blocks of life
by Staff Writers
Bern, Switzerland (SPX) Jan 25, 2023

This image by the NASA/ESA/CSA James Webb Space Telescope's Near-InfraRed Camera (NIRCam) features the central region of the Chameleon I dark molecular cloud. The lights from numerous background stars can be seen as orange dots behind the cloud.

Frozen molecules were central to the origin of life on Earth. In addition to impacts of icy comets and asteroids, according to current theory, our planet likely also received the elementary components of life from the ices of the immense interstellar molecular cloud from which the Earth and the rest of the solar system emerged.

In a new study, an international research team, with the participation of a researcher from the University of Bern and the National Centre of Competence in Research (NCCR) PlanetS, has now discovered ice in deeper regions of such a molecular cloud than ever before. At the same time, with a temperature of about minus 263 degrees Celsius (or about ten degrees above absolute zero), it is the coldest ice ever measured. The results were published in the journal Nature Astronomy.

A wealth of ice varieties
"This is the first time researchers have been able to study the composition of so-called pre-stellar ices near the centre of a molecular cloud," says Melissa McClure, an astronomer at Leiden Observatory and lead author of the study.

"In addition to simple ices such as water, carbon dioxide, carbon monoxide, ammonia, and methane we were able to identify several other compounds, including the more complex organic ice methanol." The measurements, made by the team with the JWST of NASA, ESA and the Canadian Space Agency (CSA), provide the research community with unprecedented insights into the abundance of icy compounds that can be found inside interstellar molecular clouds - and subsequently incorporated into stars and planets that emerge from them.

A necessary precision
"We recognise the different icy molecules by their so-called absorption spectrum. They leave this chemical fingerprint against the background starlight that shines through the cloud onto the telescope," explains study co-author and researcher at the NCCR PlanetS and the University of Bern, Maria Drozdovskaya. She is part of the Ice Age team, which consists of 50 experts in astrochemistry, laboratory astrophysics, star formation and the interstellar medium from 10 countries (see also info box).

In this study, the team focused on the molecular cloud "Chameleon I", more than 500 light years away from Earth, in which dozens of young stars are currently forming. They are located near the centre, in a particularly cold, dense and therefore difficult to study region. "Only with the Webb's high-precision infrared spectrographs (NIRSpec and MIRI), which can precisely detect and resolve radiation at these wavelengths, were these measurements possible," says the astronomer.

Do planets contain the ingredients of life from the beginning?
But the measurements not only provided the research team with unprecedented insights, they also provided them with new puzzles. "We were able to measure not only the occurrence of these substances, but also the abundance of some elements contained in the icy compounds," explains Drozdovskaya. These elements are carbon, hydrogen, oxygen, nitrogen and sulphur, which the team collectively refers to as CHONS.

"These elements are important components of prebiotic molecules such as simple amino acids - and thus ingredients of life, so to speak," Drozdovskaya says. But the team found that the amount of these elements in the measured ices was less than the total budget of each element expected, based on the density of this cloud. This suggests that these elements are not found exclusively in the icy components of molecular clouds, but could also be lurking elsewhere.

"The fact that we are 'missing' some of the CHONS budget could mean that CHONS are trapped in rocky dust particles, for example," explains Melissa McClure. "This could allow a greater diversity in the bulk composition of terrestrial planets."

The team's identification of complex organic molecules, like methanol and potentially ethanol, also suggests that the many star and planet systems developing in this particular cloud will inherit molecules from the molecular cloud in a fairly advanced chemical state. "This could mean that the presence of prebiotic molecules in planetary systems is a common result of star formation, rather than a unique feature of our own Solar System", says McClure.

Research Report:An Ice Age JWST inventory of dense molecular cloud ices


Related Links
Center for Space and Habitability (CSH) und NFS PlanetS, University of Bern
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
Rare opportunity to study short-lived volcanic island reveals sulfur-metabolizing microbes
Boulder CO (SPX) Jan 23, 2023
In 2015, a submarine volcano in the South Pacific erupted, forming the Hunga Tonga Hunga Ha'apai island, destined to a short, seven-year life. A research team led by the University of Colorado Boulder and Cooperative Institute for Research in Environmental Sciences (CIRES) jumped on the rare opportunity to study the early microbial colonizers of a newly formed landmass and to their surprise, the researchers discovered a unique microbial community that metabolizes sulfur and atmospheric gases, similar to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
The last mysteries of mica

Novel technique developed to obtain key chemical industry input without emitting CO2

Temperature-sensing building material changes color to save energy

MLU physicists solve mystery of two-dimensional quasicrystal formation from metal oxides

EXO WORLDS
GIT becomes Iridium Certus Service Provider to DoD and other Government customers

Airbus to provide satellite communications for Belgian Armed Forces

Latest milestone brings NTS-3 Vanguard closer to 2023 launch

Viasat managed services contract by US Marine Corps

EXO WORLDS
EXO WORLDS
New Galileo service set to deliver 20 cm accuracy

HawkEye 360 to monitor GPS interference in support of the US Space Force

Falcon 9 launches sixth GPS 3 satellite

Quectel expands its 5G and GNSS Combo Antennas Portfolio

EXO WORLDS
Driving mobility into the third dimension

Two killed in Philippines air crash, another plane missing

Two Indian military jets crash, one pilot killed

NASA goes live with surrogate eVTOL flight tests in Texas

EXO WORLDS
Danish quantum physicists make nanoscopic advance of colossal significance

Qubits on strong stimulants

Spin transport through molecular films long enough for spintronic devices

This chilling effect on stacked chips could ignite computing at the edge

EXO WORLDS
ACME Lithium locates samples with high Lithium values using ASTERRA satellite technology

New data platform to host Copernicus Earth observation data

Utah researcher to lead study of clouds in cleanest air on Earth

Future-proofing ice measurements from space

EXO WORLDS
France to probe microplastic pellet pollution on Atlantic beaches

"Dark" side of air pollution across China poses potential health threat

Plastic pirouettes: Japan's recycled bottle ballet

Kelp farms could help reduce coastal marine pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.