Space Industry and Business News  
STELLAR CHEMISTRY
Webb Telescope clears critical sunshield deployment testing
by Thaddeus Cesari for GSFC News
Greenbelt MD (SPX) Oct 23, 2019

After successfully assembling the entire observatory, technicians and engineers moved on to fully deploy and tension all five layers of its tennis court sized sunshield, which is designed to keep its optics and sensors in the shade and away from interference.

The sunshield for NASA's James Webb Space Telescope has passed a test critical to preparing the observatory for its 2021 launch. Technicians and engineers fully deployed and tensioned each of the sunshield's five layers, successfully putting the sunshield into the same position it will be in a million miles from Earth.

"This was the first time that the sunshield has been deployed and tensioned by the spacecraft electronics and with the telescope present above it. The deployment is visually stunning as a result, and it was challenging to accomplish," said James Cooper, NASA's Webb Telescope Sunshield Manager at NASA's Goddard Space Flight Center, Greenbelt, Maryland.

To observe distant parts of the universe humans have never seen before, the Webb observatory is equipped with an arsenal of revolutionary technologies, making it the most sophisticated and complex space science telescope ever created. Among the most challenging of these technologies is the five-layer sunshield, designed to protect the observatory's mirrors and scientific instruments from light and heat, primarily from the Sun.

As a telescope optimized for infrared light, it is imperative that Webb's optics and sensors remain extremely cold, and its sunshield is key for regulating temperature. Webb requires a successful sunshield deployment on orbit to meet its science goals.

The sunshield separates the observatory into a warm side that always faces the Sun (thermal models show the maximum temperature of the outermost layer is 383 Kelvin or approximately 230 degrees Fahrenheit), and a cold side that always faces deep space (with the coldest layer having a modeled minimum temp of 36 Kelvin, or around minus 394 degrees Fahrenheit). The oxygen present in Earth's atmosphere would freeze solid at the temperatures experienced on the cold side of the sunshield, and an egg could easily be boiled with the heat encountered on the warm end.

Webb has passed other deployment tests during its development. Equally as important were the successful disposition of issues uncovered by those earlier deployments and the spacecraft element environmental testing. As before, technicians used gravity-offsetting pulleys and weights to simulate the zero-g environment it will experience in space. By carefully monitoring the deployment and tensioning of each individual layer, Webb technicians ensure that once on orbit, they will function flawlessly.

"This test showed that the sunshield system survived spacecraft element environmental testing, and taught us about the interfaces and interactions between the telescope and sunshield parts of the observatory," Cooper added. "Many thanks to all the engineers and technicians for their perseverance, focus and countless hours of effort to achieve this milestone."

The sunshield consists of five layers of a polymer material called Kapton. Each layer is coated with vapor-deposited aluminum, to reflect the Sun's heat into space. The two hottest sun-facing layers also have a "doped-silicon" (or treated silicon) coating to protect them from the Sun's intense ultraviolet radiation.

To collect light from some of the first stars and galaxies to have formed after the Big Bang, the telescope needed both the largest mirror ever to be launched into space, and the sunshield that has the wingspan of an entire tennis court. Because of the telescope's size, shape and thermal performance requirements, the sunshield must be both big and complex. But it also has to fit inside a standard 16-foot-(5-meter)-diameter rocket payload fairing, and also reliably deploy into a specific shape, while experiencing the absence of gravity, without error.

Following Webb's successful sunshield test, team members will begin the long process of perfectly folding the sunshield back into its stowed position for flight, which occupies a much smaller space than when it is fully deployed. Then, the observatory will be subjected to comprehensive electrical tests and one more set of mechanical tests that emulate the launch vibration environment, followed by one final deployment and stowing cycle on the ground, before its flight into space.


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Arecibo Observatory's computing power to be enhanced
Orlando FL (SPX) Oct 18, 2019
The Arecibo Observatory in Puerto Rico is going to get a major computing power upgrade as the University of Central Florida expands its relationship with Microsoft. UCF manages the National Science Foundation's Arecibo Observatory (AO), home to one of the most powerful and sensitive radio telescopes in the world with a unique planetary radar system. AO has contributed to decades of science discovery including the first binary pulsar, the first exoplanet and more recently playing a key role in NASA ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Ten highlights from NASA's Van Allen Probes mission

Sounding rocket tech could enable simultaneous, multi-point measurements

Highest throughput 3D printer is the future of manufacturing

Chains of atoms move at lightning speed inside metals

STELLAR CHEMISTRY
China launches new communication technology experiment satellite

2nd Space Operations Squadron decommissions 22-year-old satellite

Next-gen satellite communications system ready for use, U.S. Navy says

Satlink shows the most advanced satellite telecommunications solutions to Spanish Special Forces

STELLAR CHEMISTRY
STELLAR CHEMISTRY
ISRO works with Qualcomm to develop improved geo-location chipset

Satelles, Inc. Secures $26 Million in Series C Funding Round Led by C5 Capital

Highly accurate GPS is possible thanks to NASA

Northrop Grumman awarded $1.39B for new Air Force navigation system

STELLAR CHEMISTRY
Three firms net $412.9M for P-8A engine work for Australia, U.S. Navy

Taiwan says fighter jet's missing black box found after two years

Full-rate production of F-35 my be delayed for 13 months

Cathay woes pile up as passenger figures dip again in September

STELLAR CHEMISTRY
Blanket of light may give better quantum computers

Study reveals how age affects perception of white LED light

Radiation detector with the lowest noise in the world boosts quantum work

Researchers develop tiny infrared spectrometer

STELLAR CHEMISTRY
How aerosols affect our climate

Tiny particles lead to brighter clouds in the tropics

Joint Polar Satellite System's Microwave Instrument Fully Assembled

AI for understanding and modelling the Earth System

STELLAR CHEMISTRY
Day after protests, Lebanese don gloves and clean up

Sunlight degrades polystyrene much faster than expected

Greece fights for its beaches and gets tough on plastic pollution

Delhi pollution 'action plan' comes into force









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.