Space Industry and Business News
STELLAR CHEMISTRY
Webb Telescope catches glimpse of possible first-ever 'dark stars'
These three objects (JADES-GS-z13-0, JADES-GS-z12-0, and JADES-GS-z11-0) were originally identified as galaxies in December 2022 by the JWST Advanced Deep Extragalactic Survey (JADES). Now, a team including Katherine Freese at The University of Texas at Austin speculate they might actually be "dark stars," theoretical objects much bigger and brighter than our sun, powered by particles of dark matter annihilating.
Webb Telescope catches glimpse of possible first-ever 'dark stars'
by Staff Writers
Austin TX (SPX) Jul 14, 2023

Stars beam brightly out of the darkness of space thanks to fusion, atoms melding together and releasing energy. But what if there's another way to power a star?

A team of three astrophysicists - Katherine Freese at The University of Texas at Austin, in collaboration with Cosmin Ilie and Jillian Paulin '23 at Colgate University - analyzed images from the James Webb Space Telescope (JWST) and found three bright objects that might be "dark stars," theoretical objects much bigger and brighter than our sun, powered by particles of dark matter annihilating. If confirmed, dark stars could reveal the nature of dark matter, one of the deepest unsolved problems in all of physics.

"Discovering a new type of star is pretty interesting all by itself, but discovering it's dark matter that's powering this-that would be huge," said Freese, director of the Weinberg Institute for Theoretical Physics and the Jeff and Gail Kodosky Endowed Chair in Physics at UT Austin.

Although dark matter makes up about 25% of the universe, its nature has eluded scientists. Scientists believe it consists of a new type of elementary particle, and the hunt to detect such particles is on. Among the leading candidates are Weakly Interacting Massive Particles. When they collide, these particles annihilate themselves, depositing heat into collapsing clouds of hydrogen and converting them into brightly shining dark stars. The identification of supermassive dark stars would open up the possibility of learning about the dark matter based on their observed properties.

The research is published in the Proceedings of the National Academy of Sciences.

Follow-up observations from JWST of the objects' spectroscopic properties - including dips or excess of light intensity in certain frequency bands - could help confirm whether these candidate objects are indeed dark stars.

Confirming the existence of dark stars might also help solve a problem created by JWST: There seem to be too many large galaxies too early in the universe to fit the predictions of the standard model of cosmology.

"It's more likely that something within the standard model needs tuning, because proposing something entirely new, as we did, is always less probable," Freese said. "But if some of these objects that look like early galaxies are actually dark stars, the simulations of galaxy formation agree better with observations."

The three candidate dark stars (JADES-GS-z13-0, JADES-GS-z12-0, and JADES-GS-z11-0) were originally identified as galaxies in December 2022 by the JWST Advanced Deep Extragalactic Survey (JADES). Using spectroscopic analysis, the JADES team confirmed the objects were observed at times ranging from about 320 million to 400 million years after the Big Bang, making them some of the earliest objects ever seen.

"When we look at the James Webb data, there are two competing possibilities for these objects," Freese said. "One is that they are galaxies containing millions of ordinary, population-III stars. The other is that they are dark stars. And believe it or not, one dark star has enough light to compete with an entire galaxy of stars."

Dark stars could theoretically grow to be several million times the mass of our sun and up to 10 billion times as bright as the sun.

"We predicted back in 2012 that supermassive dark stars could be observed with JWST," said Ilie, assistant professor of physics and astronomy at Colgate University. "As shown in our recently published PNAS article, we already found three supermassive dark star candidates when analyzing the JWST data for the four high redshift JADES objects spectroscopically confirmed by Curtis-Lake et al, and I am confident we will soon identify many more."

The idea for dark stars originated in a series of conversations between Freese and Doug Spolyar, at the time a graduate student at the University of California, Santa Cruz. They wondered: What does dark matter do to the first stars to form in the universe? Then they reached out to Paolo Gondolo, an astrophysicist at the University of Utah, who joined the team. After several years of development, they published their first paper on this theory in the journal Physical Review Letters in 2008.

Together, Freese, Spolyar and Gondolo developed a model that goes something like this: At the centers of early protogalaxies, there would be very dense clumps of dark matter, along with clouds of hydrogen and helium gas. As the gas cooled, it would collapse and pull in dark matter along with it. As the density increased, the dark matter particles would increasingly annihilate, adding more and more heat, which would prevent the gas from collapsing all the way down to a dense enough core to support fusion as in an ordinary star. Instead, it would continue to gather more gas and dark matter, becoming big, puffy and much brighter than ordinary stars. Unlike ordinary stars, the power source would be evenly spread out, rather than concentrated in the core. With enough dark matter, dark stars could grow to be several million times the mass of our sun and up to 10 billion times as bright as the sun.

Funding for this research was provided by the U.S. Department of Energy's Office of High Energy Physics program and the Vetenskapsradet (Swedish Research Council) at the Oskar Klein Centre for Cosmoparticle Physics at Stockholm University.

Research Report:Supermassive Dark Star candidates seen by JWST

Related Links
The University of Texas at Austin
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Exploring dark matter and the first bright galaxies simultaneously: 21-cm forest probe may unlock secrets of early universe
Beijing, China (SPX) Jul 12, 2023
The mystery of the first galaxies of the universe is an indomitable urge of human beings. The formation of them is mastered by the nature of dark matter which is also one of the most important problems faced by fundamental physics. However, understanding the nature of dark matter-for example, whether it is cold or warm-and its subsequent effect on the first galaxy formation is a huge challenge. Now, a joint research team from Northeastern University (China) and the National Astronomical Observator ... read more

STELLAR CHEMISTRY
Revolutionary materials and techniques transform aircraft construction

Wind River VxWorks software chosen for Astroscale's Space Debris Solution ELSA-M

Simulating Aeolus's return: mission control feels the heat

Boeing's Millennium Space Systems amplifies small satellite production

STELLAR CHEMISTRY
ATLAS Space launches Freedom Space for Government Missions

SYRACUSE 4B Satellite Launched: Boost for French Military Communications

DoD awards Global X-Band Blanket Purchase Agreement to SES

Ensuring reliable communications between US and Partners at the tactical edge

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Potential earthquake precursor discovered through GPS measurements

Northrop Grumman's new airborne navigation system achieves successful flight test

Fugro and GomSpace deliver world class position and timing accuracy onboard LEO satellites

GMV to head up Galileo ground segment after securing a new contract

STELLAR CHEMISTRY
US condemns 'unsafe' Russian flying over Syria

On the wing-lets of innovation with NASA Armstrong

Vanguard of stealth technology over many decades

Stratospheric success for BAE Systems' PHASA-35 UAV drone

STELLAR CHEMISTRY
Chip giant AMD says AI to be 'mega-trend' for computing world

Next-generation microelectronics manufacturing aims to sustain R and D Ecosystem

Consortium explores energy-efficient electronics and photonics

Chip tech leader ASML sales jump despite US-China spat

STELLAR CHEMISTRY
Groundbreaking method to speed up aerosol retrieval data from Chinese optical satellite

Crews head down river, out to sea to prep new SWOT water satellite

Detecting threats beyond the limits of human, sensor sight

HawkEye 360 raises $58M for satellite architecture and data science acceleration

STELLAR CHEMISTRY
Lebanese activists fight rampant beachside development

Marine animal poisonings overwhelm California volunteers

France to pay bonus for shoe, clothes repairs to cut waste

UK polluting firms to face unlimited fines; Toxic foam blights crucial Brazil river

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.