Space Industry and Business News  
WATER WORLD
Wave beams mix and stir the ocean to create climate
by Staff Writers
Washington DC (SPX) Jun 26, 2017


Vorticity (?) showing internal wave beams generated by tidal flow over (a) supercritical (f > ?), (b) critical (f = ?), and (c) subcritical (f < ?) continental shelf slopes. The beams are denoted by the black and magenta arrows emitted from different energy sources (black and magenta points). Credit Shuqun Cai, Chinese Academy of Sciences

Ocean circulation patterns have a profound effect on global climate. Waves deep within the ocean play an important role in establishing this circulation, arising when tidal currents oscillate over an uneven ocean bottom. The internal waves that are generated by this process stir and mix the ocean, bringing cold, deep water to the surface to be warmed by the sun.

This week in the journal Physics of Fluids, from AIP Publishing, investigators from the South China Sea Institute of Oceanography report how to tell which way internal waves will go. The proposed theory unifies several previously understood explanations of wave propagation.

Without these internal waves, deep ocean circulation would shut down and the oceans would become stratified into warm water layered over permanently cold deep water. As the tides sweep water back and forth over the ocean bottom every day, many waves are created that stretch vertically from the ocean bottom to the surface of the sea.

The repetitive motion of these tidal oscillations causes the vertical waves to superimpose, or accumulate, until a so-called "wave beam" forms. This composite wave transports water from the ocean depths to the surface and behaves somewhat like a beam of light - hence its name.

The hills, ridges and valleys of the ocean bottom play a key role in the generation of wave beams. The boundary of a continental shelf, presenting a sharp edge or break in the slope, is also important in this process. A key parameter involves two angles, one being the angle the ocean bottom makes with the horizontal, and the other, the wave beam itself.

If the ocean bottom slope angle is less than the wave beam angle, the situation is "subcritical". A "supercritical" situation arises when the topographic slope exceeds the wave beam angle. A "critical" situation exists when the two angles match. The work reported in Physics of Fluids explores the generation of internal waves in all three cases and explains of wave beams direct themselves. The accompanying figure shows typical results from the published simulations.

The existence of wave beams transverse to the ocean bottom topography has been controversial and recent explanations for these are inadequate. The present study was carried out to clarify the literature.

The investigators encountered a somewhat surprising result for the beam lying on a critical slope. The origin point for wave beams (magenta dot in panel (b) of the figure) is near, but still some distance down from, the abrupt break in the continental shelf. Theoretically, internal waves should be generated along the entire down-slope, so it is not clear why beams should originate from this one mysterious place. Future research will focus on determining why this feature arises and what it means for simulations of this important global phenomenon.

The article, "Selection of internal wave beam directions by a geometric constraint provided by topography," is authored by Zhiwu Chen, Jieshuo Xie, Jiexin Xu, Yinghui He and Shuqun Cai.

WATER WORLD
A changing climate affects plankton populations
Thuwal, Saudi Arabia (SPX) Jun 20, 2017
Bacterial and archaeal plankton, as the most abundant form of life in the oceans, profoundly influence the global environment. Based on a broad survey of the seas, researchers from KAUST have developed a model that predicts how climate change might affect these microbial populations1. Temperature, nutrient availability and mortality rates are three primary factors that can strongly influen ... read more

Related Links
American Institute of Physics
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
A more sustainable way to refine metals

NREL-led research effort creates new alloys, phase diagram

Scientists develop molecular code for melanin-like materials

Sea urchin protein provides insights into self-assembly of skeletal structures

WATER WORLD
Harris Corp. awarded Special Forces radio contract

Airbus provides German troops with support communications at 15 sites worldwide

Airbus further extends channel partner program for military satellite communications in Asia

Radio communications have surprising influence on Earth's near-space environment

WATER WORLD
WATER WORLD
India to Make Native Navigation System Mandatory For All Aircraft

BDS Precise Service System covers over 300 Chinese cities

Galileo grows: two more satellites join working constellation

GIS is a powerful tool that should be used with caution

WATER WORLD
Chinese and Russians aim to end Airbus-Boeing duopoly

Grounded US F-35s to resume flying after oxygen problem

Lockheed Martin still moving F-16 production to South Carolina

Northrup Grumman to upgrade F-16 radars

WATER WORLD
New design improves performance of flexible wearable electronics

To connect biology with electronics, be rigid, yet flexible

Seeing the invisible with a graphene-CMOS integrated device

Breakthrough by Queen's University paves way for smaller electronic devices

WATER WORLD
Watching cities grow

Sofradir designs supersize near infrared detector for space observation

Making waves with the hot electrons within Earth's radiation belts

Bangladesh's heavy rainfall examined with NASA's IMERG

WATER WORLD
Vietnam environment official sacked over mass fish kill

Scientists probe role of sunscreen in accelerating coral reef decline

Risky gold rush: Indonesia tackles illegal mining boom

Athens rubbish piles up as Greeks protest contracts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.