Space Industry and Business News  
ENERGY TECH
Water Oxidation Advance Boosts Potential For Solar Fuel

Emory University chemists have developed the most potent homogeneous catalyst known for water oxidation, considered a crucial component for generating clean hydrogen fuel using only water and sunlight. The breakthrough was made in collaboration with the Paris Institute of Molecular Chemistry. Pictured are bubbles of oxygen forming from water oxidation, catalyzed by the new tetra-cobalt WOC. The fastest, carbon-free molecular water oxidation catalyst (WOC) to date "has really upped the standard from the other known homogeneous WOCs," said Emory inorganic chemist Craig Hill, whose lab led the effort. "It's like a home run compared to a base hit." In order to be viable, a WOC needs selectivity, stability and speed. Homogeneity is also a desired trait, since it boosts efficiency and makes the WOC easer to study and optimize. The new WOC has all of these qualities, and it is based on the cheap and abundant element cobalt, adding to its potential to help solar energy go mainstream. Benjamin Yin, an undergraduate student in Hill's lab, is the lead author on the Science paper. Emory chemists who are co-authors include Hill, Yurii Gueletii, Jamal Musaev, Zhen Luo and Ken Hardcastle. The U.S. Department of Energy funded the work. Credit: Photo by Benjamin Yin, Emory University
by Staff Writers
Atlanta GA (SPX) Mar 15, 2010
Emory University chemists have developed the most potent homogeneous catalyst known for water oxidation, considered a crucial component for generating clean hydrogen fuel using only water and sunlight. The breakthrough, published in the journal Science, was made in collaboration with the Paris Institute of Molecular Chemistry.

The fastest, carbon-free molecular water oxidation catalyst (WOC) to date "has really upped the standard from the other known homogeneous WOCs," said Emory inorganic chemist Craig Hill, whose lab led the effort. "It's like a home run compared to a base hit."

In order to be viable, a WOC needs selectivity, stability and speed. Homogeneity is also a desired trait, since it boosts efficiency and makes the WOC easer to study and optimize. The new WOC has all of these qualities, and it is based on the cheap and abundant element cobalt, adding to its potential to help solar energy go mainstream.

Benjamin Yin, an undergraduate student in Hill's lab, is the lead author on the Science paper. Emory chemists who are co-authors include Hill, Yurii Gueletii, Jamal Musaev, Zhen Luo and Ken Hardcastle. The U.S. Department of Energy funded the work.

The WOC research is a component of the Emory Bio-inspired Renewable Energy Center, which aims to mimic natural processes such as photosynthesis to generate clean fuel. The next step involves incorporating the WOC into a solar-driven, water-splitting system.

The long-term goal is to use sunlight to split water into oxygen and hydrogen. Hydrogen becomes the fuel. Its combustion produces the by-product of water - which flows back into a clean, green, renewable cycle.

Three main technical challenges are involved: developing a light collector, a catalyst to oxidize water to oxygen and a catalyst to reduce water to hydrogen. All three components need improvement, but a viable WOC may be the most difficult scientific challenge. "We are aiming for a WOC that is free of organic structure, because organic components will combine with oxygen and self-destruct," Hill says. "You'll wind up with a lot of gunk."

Enzymes are nature's catalysts. The enzyme in the oxygen-evolving center of green plants "is about the least stable catalyst in nature, and one of the shortest lived, because it's doing one of the hardest jobs," Hill says.

"We've duplicated this complex natural process by taking some of the essential features from photosynthesis and using them in a synthetic, carbon-free, homogeneous system. The result is a water oxidation catalyst that is far more stable than the one found in nature."

For decades, scientists have been trying to imitate Mother Nature and create a WOC for artificial photosynthesis. Nearly all of the more than 40 homogeneous WOCs developed by labs have had significant limitations, such as containing organic components that burn up quickly during the water oxidation process.

Two years ago, Hill's lab and collaborators developed the first prototype of a stable, homogenous, carbon-free WOC, which also worked faster than others known at the time. The prototype, however, was based on ruthenium, a relatively rare and expensive element.

Building on that work, the researchers began experimenting with the cheaper and more abundant element cobalt. The cobalt-based WOC has proved even faster than the ruthenium version for light-driven water oxidation



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Emory University
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


ENERGY TECH
Scavenging Energy Waste To Turn Water Into Hydrogen Fuel
Madison WI (SPX) Mar 15, 2010
Materials scientists at the University of Wisconsin-Madison have designed a way to harvest small amounts of waste energy and harness them to turn water into usable hydrogen fuel. The process is simple, efficient and recycles otherwise-wasted energy into a useable form. "This study provides a simple and cost-effective technology for direct water splitting that may generate hydrogen fuels by ... read more







The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement