Space Industry and Business News  
TIME AND SPACE
Watching quantum jumps
by Staff Writers
Vienna, Austria (SPX) Nov 09, 2016


A laser pulse hits a helium atom. One of the electron is ripped out of the atom, the other electron may change its quantum state. Image courtesy TU Wien. For a larger version of this image please go here.

Quantum particles can change their state very quickly - this is called a "quantum jump". An atom, for example, can absorb a photon, thereby changing into a state of higher energy. Usually, these processes are thought to happen instantaneously, from one moment to the next.

However, with new methods, developed at TU Wien (Vienna), it is now possible to study the time structure of such extremely fast state changes. Much like an electron microscope allows us to take a look at tiny structures which are too small to be seen with the naked eye, ultrashort laser pulses allow us to analyse temporal structures which used to be inaccessible.

The theoretical part of the project was done by Prof. Joachim Burgdorfer's team at TU Wien (Vienna), which also developed the initial idea for the experiment. The experiment was performed at the Max-Planck-Institute for Quantum Optics in Garching (Germany). The results have now been published in the journal Nature Physics.

The Most Accurate Time Measurement of Quantum Jumps

A neutral helium atom has two electrons. When it is hit by a high energy laser pulse, it can be ionized: one of the electrons is ripped out of the atom and departs from it. This process occurs on a time scale of attoseconds - one attosecond is a billionth of a billionth of a second.

"One could imagine that the other electron, which stays in the atom, does not really play an important part in this process - but that's not true", says Renate Pazourek (TU Wien). The two electrons are correlated, they are closely connected by the laws of quantum physics, they cannot be seen as independent particles.

"When one electron is removed from the atom, some of the laser energy can be transferred to the second electron. It remains in the atom, but it is lifted up to a state of higher energy", says Stefan Nagele (TU Wien).

Therefore, it is possible to distinguish between two different ionization processes: one, in which the remaining electron gains additional energy and one, in which it remains in a state of minimal energy. Using a sophisticated experimental setup, it was possible to show that the duration of these two processes is not exactly the same.

"When the remaining electron jumps to an excited state, the photo ionization process is slightly faster - by about five attoseconds", says Stefan Nagele.

It is remarkable how well the experimental results agree with theoretical calculations and large-scale computer simulations carried out at the Vienna Scientific Cluster, Austria's largest supercomputer: "The precision of the experiment is better than one attosecond. This is the most accurate time measurement of a quantum jump to date", says Renate Pazourek.

Controlling Attoseconds
The experiment provides new insights into the physics of ultrashort time scales. Effects, which a few decades ago were still considered "instantaneous" can now be seen as temporal developments which can be calculated, measured and even controlled.

This does not only help to understand the basic laws of nature, it also brings new possibilities of manipulating matter on a quantum scale.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Vienna University of Technology
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
France doubles its experimental capability in nuclear physics
Paris, France (SPX) Nov 08, 2016
The new SPIRAL2 particle accelerator at the French large heavy-ion accelerator GANIL (CNRS/CEA), inaugurated on November 3 in the presence of the French President Francois Hollande, will be able to produce immensely powerful particle beams, enabling scientists to push back the frontiers of knowledge. This will double France's experimental capability in nuclear physics, especially with rega ... read more


TIME AND SPACE
We gather here today to join lasers and anti-lasers

Trace metal recombination centers kill LED efficiency

Studying structure to understand function within 'material families'

Study: Math scares everyone, even physicists

TIME AND SPACE
Airbus DS awarded contract for Maritime Network Evolution with the UK MoD

SES enhances connectivity for governments and institutions

US Navy Satellite Begins Pre-Operational Testing After Rocky Ride Into Orbit

MUOS-5 Secure Communications Satellite Reaches Orbit, Begins Pre-Operational Testing

TIME AND SPACE
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

TIME AND SPACE
Swarm reveals why satellites lose track

Satellites to spot drones and guide cyclists

No GPS, no problem: Next-generation navigation

Australia's coordinates out by more than 1.5 metres: scientist

TIME AND SPACE
'Morphing' wing offers new twist on plane flight and manufacturing

Sweden orders new pilot helmets

Russia's UEC, China's SBW discuss joint gas turbine engine project

Boeing gets $478 million F-15 electronic warfare system contract

TIME AND SPACE
Semiconductor-free microelectronics are now possible, thanks to metamaterials

Chip maker Broadcom in $5.9 bn deal to buy Brocade

Special-purpose computer that may someday save us billions

Exploring defects in nanoscale devices for possible quantum computing applications

TIME AND SPACE
Extreme weather warnings at UN climate meeting

Don't see ISRO's Bhuvan as competition: Google India

GRAPES-3 indicates a crack in Earth's magnetic shield

Study reveals how particles that seed clouds in the Amazon are produced

TIME AND SPACE
Pollution emitted near equator has biggest impact on global ozone

Delhi shuts schools as smog sparks health 'emergency'

Five things to know about Delhi's toxic smog

Pakistan's Lahore chokes on toxic smog









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.