Space Industry and Business News  
TIME AND SPACE
Watching a quantum material lose its stripes
by Staff Writers
Berkeley CA (SPX) Nov 30, 2017


This is an illustration of an ultrashort laser light striking a lanthanum strontium nickel oxide crystal, triggering the melting of atomic-scale stripes. The charges (yellow) quickly become mobile while the crystal distortions react only with delay, exposing the underlying interactions.

Stripes can be found everywhere, from zebras roaming in the wild to the latest fashion statement. In the world of microscopic physics, periodic stripe patterns can be formed by electrons within so-called quantum materials.

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have now disentangled the intriguing dynamics of how such atomic-scale stripes melt and form, providing fundamental insights that could be useful in the development of novel energy materials.

In strongly correlated quantum materials, interactions between the electrons reign supreme. The complex coupling of these electrons with each other - and with electron spins and crystal vibrations - results in exotic phases such as charge ordering or high-temperature superconductivity.

"A key goal of condensed matter physics is to understand the forces responsible for complex phases and the transitions between them," said Robert Kaindl, a principal investigator and staff scientist at Berkeley Lab's Materials Sciences Division. "But in the microscopic world, interactions are often extremely fast. If we just slowly heat or cool a material to change its phase, we can miss out on the underlying action."

Kaindl and his colleagues have been using ultrafast laser pulses to tease apart the microscopic dynamics of correlated quantum materials to access the interactions among the electrons and with the crystal's atomic lattice in the time domain.

For this study, the researchers worked with lanthanum nickelate, a quantum material and model stripe compound. In particular, the researchers investigated the electronic charges that form the stripe pattern and how they couple to the crystal lattice.

How charges interact with the crystal is a key ingredient to stripe physics, the researchers said.

"The crystal lattice strongly distorts around the charge stripes," said Giacomo Coslovich, who did the work while he was a postdoctoral researcher at Berkeley Lab. "This change of the crystal symmetry results in new lattice vibrations, which we can in turn detect with light at terahertz frequencies."

Kaindl and Coslovich are corresponding authors of a paper reporting these results in Science Advances.

In their experiments, the material is optically excited by a near-infrared laser pulse with a duration of 50 femtoseconds, and probed with a terahertz pulse with variable time delay. A femtosecond is one millionth of one billionth of a second.

The researchers found unexpected dynamics when using the laser to disrupt the microscopic order.

"The interesting thing is that while the laser immediately excited the electrons, the vibrational distortions in the crystal initially remained frozen," said Coslovich, who is now associate staff scientist at SLAC National Accelerator Laboratory. "The stripe-phase vibrations disappeared only after several hundred to a few thousand femtoseconds. We also concluded that the speed depends on the direction of the interactions."

The interpretation of the experiments was supported by simulations of the phonon dispersion by Alexander Kemper of North Carolina State University.

The results provide important insight into the interactions, or "glue," that couple electrons to lattice vibrations in the lanthanum nickelate. However, their broader relevance stems from recent observations of charge order in high-temperature superconductors - materials where electrical currents can flow without resistance at temperatures above the boiling point of liquid nitrogen. While the mechanism remains puzzling, recent studies demonstrated the ability to induce superconductivity by suppressing stripes with short light pulses.

"Fluctuating stripes are thought to occur in unconventional superconductors. Our study puts a speed limit on how fast such patterns can change," said Kaindl. "It highlights the importance of considering both the spatial and temporal structure of the glue."

Research paper

TIME AND SPACE
Highly charged molecules behave paradoxically
Lund, Sweden (SPX) Nov 30, 2017
A number of chemistry researchers from several institutions including Lund University in Sweden, have managed to identify a new mechanism that makes certain charged biomolecules attach to each other. The biomolecules in the present study serve as models for antibacterial peptides, that is, protein-like molecules that fulfil important functions in the body. "Antibacterial peptides are impor ... read more

Related Links
Lawrence Berkeley National Laboratory
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Quantum optics allows us to abandon expensive lasers in spectroscopy

Spin current from heat: New material increases efficiency

New catalyst controls activation of a carbon-hydrogen bond

Math gets real in strong, lightweight structures

TIME AND SPACE
US Navy accepts 5th MUOS Satellite for global military cellular network

SES GS Awarded US Government Satellite Solutions Contract

16th SPCS Defenders of critical satellite communications

First order for Elta ELK-1882T SATCOM network system

TIME AND SPACE
TIME AND SPACE
Lockheed Martin assembles third US Air Force GPS 3 satellite

DARPA digging for ideas to revolutionize subterranean mapping

China's GPS network Beidou joins global rescue data network

Galileo quartet fuelled and ready to fly

TIME AND SPACE
Indian aerospace behemoth reveals why Indo-Russia FGFA is highly feasible

Lockheed awarded $37.7M contract for F-35 software conversions

Indonesia re-opening Bali airport shut by volcanic ash

China's Okay Airways orders five Boeing Dreamliners for $1.4 bn

TIME AND SPACE
Quantum simulators wield control over more than 50 qubits, setting new record

Argonne to install Comanche system to explore ARM technology for HPC

Strain-free epitaxy of germanium film on mica

Microwave-based test method can help keep 3-D chip designers' eyes open

TIME AND SPACE
Haze pollution affects satellite cloud detection

OGC seeks public comment on CDB Multi-spectral Imagery Extension

Forty years of Meteosat

China launches remote sensing satellites in multiple launches

TIME AND SPACE
99 percent of ocean microplastics could be identified with dye

Vietnam jails activist for 7 years over toxic leak protests

Clean-up dives, recycling: Lebanese respond to garbage crisis

'Trash islands' off Central America indicate ocean pollution problem









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.