Space Industry and Business News  
CLIMATE SCIENCE
Warm nights could flood the atmosphere with carbon under climate change
by Staff Writers
Princeton NJ (SPX) Dec 10, 2015


A study led by Princeton University researchers suggests that hotter nights may wield more influence than previously thought over the planet's atmosphere as global temperatures rise -- and could eventually lead to more carbon flooding the atmosphere. The researchers determined that warm nighttime temperatures, specifically in the tropics, lead plants to release more carbon through a process known as respiration. Average nighttime temperatures in tropical regions such as Manaus, Brazil, (above) have risen by 0.6 degrees Celsius since 1959. Further temperature increases risk turning Earth's land-based carbon-storage capacity, or sink, into a carbon source. Image courtesy William Anderegg, Princeton Environmental Institute. For a larger version of this image please go here.

The warming effects of climate change usually conjure up ideas of parched and barren landscapes broiling in a blazing sun, its heat amplified by greenhouse gases. But a study led by Princeton University researchers suggests that hotter nights may actually wield much greater influence over the planet's atmosphere as global temperatures rise - and could eventually lead to more carbon flooding the atmosphere.

Since measurements began in 1959, nighttime temperatures in the tropics have had a strong influence over year-to-year shifts in the land's carbon-storage capacity, or "sink," the researchers report in the journal Proceedings of the National Academy of Sciences. Earth's ecosystems absorb about a quarter of carbon from the atmosphere, and tropical forests account for about one-third of land-based plant productivity.

During the past 50 years, the land-based carbon sink's "interannual variability" has grown by 50 to 100 percent, the researchers found. The researchers used climate- and satellite-imaging data to determine which of various climate factors - including rainfall, drought and daytime temperatures - had the most effect on the carbon sink's swings. They found the strongest association with variations in tropical nighttime temperatures, which have risen by about 0.6 degrees Celsius (1 degrees Fahrenheit) since 1959.

First author William Anderegg, an associate research scholar in the Princeton Environmental Institute, explained that he and his colleagues determined that warm nighttime temperatures lead plants to put more carbon into the atmosphere through a process known as respiration.

Just as warm nights make people more active, so too does it for plants. Although plants take up carbon dioxide from the atmosphere, they also internally consume sugars to stay alive. That process, known as respiration, produces carbon dioxide, which plants step up in warm weather, Anderegg said. The researchers found that yearly variations in the carbon sink strongly correlated with variations in plant respiration.

"When you heat up a system, biological processes tend to increase," Anderegg said. "At hotter temperatures, plant respiration rates go up and this is what's happening during hot nights. Plants lose a lot more carbon than they would during cooler nights."

Previous research has shown that nighttime temperatures have risen significantly faster as a result of climate change than daytime temperatures, Anderegg said. This means that in future climate scenarios respiration rates could increase to the point that the land is putting more carbon into the atmosphere than it's taking out of it, "which would be disastrous," he said.

Of course, plants consume carbon dioxide as a part of photosynthesis, during which they convert sunlight into energy. While photosynthesis also is sensitive to rises in temperature, it only happens during the day, whereas respiration occurs at all hours and thus is more sensitive to nighttime warming, Anderegg said.

"Nighttime temperatures have been increasing faster than daytime temperatures and will continue to rise faster," Anderegg said.

"This suggests that tropical ecosystems might be more vulnerable to climate change than previously thought, risking crossing the threshold from a carbon sink to a carbon source. But there's certainly potential for plants to acclimate their respiration rates and that's an area that needs future study."

William R. L. Anderegg, Ashley P. Ballantyne, W. Kolby Smith, Joseph Majkut, Sam Rabin, Claudie Beaulieu, Richard Birdsey, John P. Dunne, Richard A. Houghton, Ranga B. Myneni, Yude Pan, Jorge L. Sarmiento, Nathan Serota, Elena Shevliakova, Pieter Tan and Stephen W. Pacala. " Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink." Proceedings of the National Academy of Sciences, published online in-advance of print Dec. 7 2015. DOI: 10.1073/pnas.1521479112


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton University
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CLIMATE SCIENCE
Dissecting paleoclimate change
Santa Barbara CA (SPX) Dec 09, 2015
Global climate change isn't new - the phenomenon has been around for millions of years. But now, a core from the ocean floor in the Santa Barbara Basin provides a remarkable ultra-high-resolution record of Earth's paleoclimate history during a brief, dynamic time hundreds of thousands of years ago. New research from UC Santa Barbara geologist James Kennett and colleagues examines a shift f ... read more


CLIMATE SCIENCE
A new theory describes ice's slippery behavior

PC steel wires on concrete and steel bridges now visible with terahertz waves

The artificial materials that came in from the cold

Physics of wrapping miniature droplets takes cue from street foods

CLIMATE SCIENCE
U.S. Air Force awards Raytheon C-130 radio upgrade contract

L-3 Communications to sell National Security Solutions business to CACI

Intelsat General applies best defense is a good offense to prevent jamming

Peryphon Development to supply rugged tactical communication products

CLIMATE SCIENCE
45th Space Wing supports NASA's Orbital ATK CRS-4 launch

Orbital cargo ship blasts off toward space station

Virgin Galactic Welcomes 'Cosmic Girl' To Fleet Of Space Access Vehicles

DXL-2: Studying X-ray emissions in space

CLIMATE SCIENCE
US Air Force General Blasts Raytheon's 'Disaster' GPS Control System

Russian Defense Ministry Conducts Final GLONASS Tests- Developer

India's GPS system will have better accuracy says ISRO

Pentagon to re-examine Air Force GPS OCX program

CLIMATE SCIENCE
UK government blasted over London airport expansion delay

Germany receives first two H145M helicopters

Northrop Grumman delivers center fuselage for first Japanese F-35

Britain delays decision on London airport expansion

CLIMATE SCIENCE
Noise can't hide weak signals from this new receiver

UC Davis scientists demonstrate DNA-based electromechanical switch

Spin current on topological insulator detected at room temps

Atomically flat tunnel transistor overcomes fundamental power challenge

CLIMATE SCIENCE
NASA spots phytoplankton bloom in North Atlantic

Ames and Hera Systems Execute Licensing Agreement

Is That a Forest? That Depends on How You Define It

Timelapse from space reveals glacier in motion

CLIMATE SCIENCE
Surveillance secret weapon in China pollution struggle

As garbage mountains rise, Indonesian capital faces waste crisis

Tehran's air pollution hits worst level in months

Beijing lifts smog red alert









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.