Space Industry and Business News  
SHAKE AND BLOW
Volcano analysis in real time
by Staff Writers
Potsdam (SPX) Sep 08, 2021

The average deformation over the Colima volcano, Mexico, for the 2017-2019 time period using German TerraSAR-X data.

Explosive volcanic eruptions often announce themselves: The dynamic of gas and magma flows inside the mountain change noticeably before eruptions and cause, among other things, the rising and lowering of the volcano's surface, which is recorded by satellites. To better analyse and interpret such changes, an interdisciplinary team led by Binayak Ghosh and Mahdi Motagh from the German Research Centre for Geosciences Potsdam (GFZ) has further developed machine learning methods to detect, using satellite measurements, even very small surface deformations automatically.

Their results were published in the "IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing". Their findings provide an important basis for analysing the growing amounts of satellite data on more than 1,500 active volcanoes worldwide virtually in near real time, and thus ultimately providing more precise warnings of eruptions.

How to detect and interpret the signs of impending volcanic eruptions early and precisely is being researched at the GFZ with an interdisciplinary approach. "The assessment of volcanic activity is determined by various parameters," explains volcanologist Thomas Walter. "These include seismic measurements, observations of temperature, the composition of released gases - and the often very complex surface deformation." The latter is in the focus of the presented research.

The breathing of volcanoes
Even in Greek mythology, there are analogies between volcanic activity and human breathing. And indeed: the surface of many volcanoes rises and falls measurably, almost as if they were breathing in before they spew out gas, ash or lava. Such bulges and subsidences are now recorded by satellites orbiting the Earth. With the help of special radar technologies, the satellites allow to get imagery from the Earth's surface in all weather conditions. Each time they orbit the Earth, one can compare the reflected microwaves with the previous one and use it to calculate an interference pattern that reflects the changes in the ground.

Ground surface deformations occurring at volcanoes, however, are often only in the order a few millimetres to centimetres. In the satellite recordings, they are superimposed by fluctuations in physical characteristics of the ground surface or by atmospheric artefacts. The newly developed method of computer-assisted data analysis brings significant progress in the interpretation of satellite images.

It was developed by Binayak Ghosh and Mahdi Motagh, head of the working group Radar and optical remote sensing for geohazards at the GFZ Remote Sensing and Geoinformatics section, in cooperation with Thomas Walter, head of the working group volcano-tectonics and -hazards at the GFZ Earthquake and Volcano Physics section, and colleagues from the GFZ, Leibniz University Hannover and the Eberhard Karls University Tubingen.

New machine learning approaches
Until now, satellite images had to be viewed and evaluated manually by scientists. In particular, changes that last only for a short period of time are often less examined, although they can provide important information about the inner processes of a volcano. In order to decipher the superimposed signals in the satellite images, scientists around the world have already used artificial intelligence in recent years.

Ghosh and Motagh have now adopted a new approach to optimise previous ML algorithms. "Our approach is based on the application of the Independent Component Analysis (ICA), which tries to extract the latent deformation signals from the satellite measurements. The minimum spanning tree-based approach then compares the multiple iterations of this ICA algorithm and filters out those signals that are most likely to indicate actual surface displacements based on statistical significance."

Field test on Mexico's Volcan de Colima - with additional insights

Ghosh and Motagh tested their method on several data sets, including satellite images of the Volcan de Colima in western Mexico. Their algorithms detected several episodes of previously unnoticed deformation events. "It is possible that volcanoes rise and fall even more frequently than we previously knew," explains co-author Walter. "In our various case studies, we were able to detect signs of both newly occurring deformations and changes in ongoing deformation processes," adds Motagh.

"Our study shows that the computer-assisted evaluation of satellite images using our new algorithms detects episodes of surface deformation much more precisely and reliably than before," concludes Ghosh. "Such a quasi-automated procedure is urgently needed to evaluate the constantly growing amount of observation data from the approximately 1500 active volcanoes," Walter emphasises.

Real-time analysis possible
"Our goal is to observe volcanic activity in near real time," says the volcanologist. His colleague Motagh explains the concrete idea for the technical use of the new analysis method: "The satellite data are freely available. Highly precise and reliable algorithms like the one we developed could evaluate the images even directly in cloud computing platforms," he says. This would eliminate the time and efforts needed to download and process the huge amounts of data locally.

"The algorithms could reveal changing activity patterns of volcanoes at an early stage," Motagh explains. "This kind of model-based flagging gives us clues about potentially important volcanic events, especially harbingers of impending eruptions," Walter adds. "As a result, it enables decisions to be made in time on how to proceed." The automatic analysis and interpretation of the available satellite data can also help researchers to describe the periodic behaviour of volcanoes in more detail in the long term.

Research Report: "Automatic Detection of Volcanic Unrest Using Blind Source Separation With a Minimum Spanning Tree Based Stability Analysis"


Related Links
GFZ Geoforschungszentrum Potsdam
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SHAKE AND BLOW
Even after an eruption, supervolcanoes remain a threat for thousands of years
Washington DC (UPI) Sep 3, 2021
It's long been assumed that after supervolcanoes explode, the threat of another massive eruption is greatly diminished. However, new research - published Friday in the journal Communications Earth and Environment - suggests supervolcanoes remain active for thousands of years after a super-eruption. Previous surveys suggest supervolcano eruptions are typically separated by tens of thousands of years, but until now, researchers knew little about the dormancy periods in-between massive er ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
D-Orbit signs with HyImpulse Technologies for EU mission

Space junk traffic dangers to be tackled by first-of-its-kind research centre in UK

China develops sustainable development satellite

D-Orbit UK signs contract with ESA for development of debris removal technology

SHAKE AND BLOW
Northrop Grumman demonstrates connectivity for long range command and control

Northrop Grumman demonstrates open architecture high-speed connectivity

Hughes awarded IDIQ Contract by U.S. Air Force to offer enterprise satellite networking solutions

Last Tianlian I satellite placed in orbit

SHAKE AND BLOW
SHAKE AND BLOW
Space Systems Command declares three GPS III space vehicles "Available for Launch"

Virginia company licenses NASA relative navigation technology

2nd SOPS accepts new GPS satellite

GMV develops a new maritime Galileo receiver

SHAKE AND BLOW
Crew of 5 in Pacific copter crash presumed dead: US Navy

Sikorsky-Boeing delivers future Long-Range Assault Aircraft proposal to US Army

Two-Seater version of Russia's new Checkmate Fighter will be offered to woo foreign buyers

Hong Kong completes third runway as pandemic keeps city isolated

SHAKE AND BLOW
Chinese chip giant to invest $9 bn in new plant as US ban bites

Researchers use gold film to enhance quantum sensing with qubits in a 2D material

Discovery paves way for improved quantum devices

Berkeley and Caltech team up to build quantum network testbed

SHAKE AND BLOW
Allen Coral Atlas completes map of the world's coral reefs using satellite imagery

Covid restrictions bring blip in better air quality: UN

Meteosat Gen 3 takes major step towards its first launch

Gaofen 5-02 satellite launched from Taiyuan

SHAKE AND BLOW
Microplastics from recyclable plastics on the rise

Funding needed to tackle life-shortening air pollution: report

Social cost of 2019's plastic more than GDP of India

12 dead after mining pollution in DR Congo river









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.