Space Industry and Business News
MICROSAT BLITZ
Vega's fuel-free CubeSats to keep formation with wings
ANSER CubeSats undergoing final calibration checks.
Vega's fuel-free CubeSats to keep formation with wings
by Staff Writers
Paris (ESA) Sep 28, 2023

Spain's trio of ANSER CubeSats, due to fly on Europe's next Vega launcher, will fly like a flock of birds in orbit - in more ways than one. Keeping in formation by following their leader, the three shoebox-sized satellites will image Iberian waters as if they are a single standard-sized mission. And they will unfurl wing-like flaps to maintain their relative positions, surfing on the scanty airflow at the top of Earth's atmosphere.

ANSER - Advanced Nanosatellite Systems for Earth-observation Research - is a cluster of three CubeSats which will work together in close vicinity as if they are a single satellite. Due to be launched on Europe's next Vega flight, VV23, the ANSER mission is being undertaken by INTA, the Spanish Institute of Aerospace Technology.

Santiago Rodriguez Bustabad, overseeing the mission, explains: "ANSER is also the Latin name for the wild goose, a good example of birds flying in formation, adopting a leader-follower protocol, which is what our mission is emulating."

These three 3-unit CubeSats will orbit around 500 km altitude, maintaining formation at an optimum 10 km apart from each other. But they do not have any onboard propulsion systems. Instead they control their relative positions by deploying a set of flaps against the trace amounts of air at the top of the atmosphere. These will multiply their wingspan sixfold, allowing them to either drag themselves downward or lift themselves upward and sideways.

He adds: "A specially-developed algorithm will be used to plan these 'Differential Lift and Drag' manoeuvres on the ground for telecommand uplink to the satellites. Increasing the drag effect allows the creation of significant relative movements along track, while the more lightweight lift effect can produce small cross-track shifts.

"The precise aerodynamic resistance is highly dependent on the orbital altitude, but on average we would expect to spend no more than 72 hours to produce 10 km of along-track separation. Later in the mission we might attempt autonomous onboard manoeuvring as well."

One of the CubeSats serves as a leader, undertaking communications with the ground and connected to the others via inter-satellite links. It will also lead joint observations of ANSER's main target, the quality of inland Iberian lakes and reservoirs, as well as comparable water bodies worldwide.

Santiago continues: "ANSER's hyperspectral imager CINCLUS - named for another bird species - is a fractionated payload distributed across the three CubeSats. The leader satellite has a panchromatic cameras to detect clouds and pre-validate the utility of the hyperspectral images before processing on the ground. The two follower satellites host miniaturised hyperspectral cameras incorporating micro-spectrometers."

These four spectrometers cover the visible to near infrared region, supported by the panchromatic camera, delivering 60 m spatial resolution, offering insight into the suspended contents of water bodies, including its pollution levels or the presence of toxic microorganisms such as harmful phytoplankton blooms.

Santiago notes: "In recent years CubeSats and nanosatellites under 10 kg of mass have transformed from educational tools into highly-valued spacecraft for many commercial and government sectors, favoured for their short development times, rapid assimilation of new components and miniaturised sensors, lower costs - including launch costs - and improved functionality.

"But achieving operational performance can still be a challenge for such small satellites because of their limitations in terms of available power, ground coverage and resolution, revisit times and so on. And the use of commercial-off-the-shelf components and non-space-qualified parts adds extra risk.

"So to have a real chance of achieving an operational Earth-observing mission we are leaning into distributed systems in the form of clusters and constellations, together with miniaturisation."

Without onboard propulsion, the operational lifespan of an ANSER cluster will be limited to two or three years, depending on their initial altitude. But the fractionated platform approach means this is more of a strength than a weakness because replacement CubeSats can be added to the cluster regularly, offering the chance to perform hardware upgrades in orbit.

Santiago explains: "In time the individual CubeSats would all be deorbited, but replaced in the meantime by more up-to-date versions, so that their overall mission could continue uninterrupted."

ANSER is due to fly on Vega's Small Spacecraft Mission Service, a rideshare service for small satellites, securing its place through the European Commission's In-Orbit Demonstration/In-Orbit Validation programme.

Managed on behalf of the Commission by ESA's Small Satellite Platform Unit, this programme allows the early orbital testing of new technologies to make Europe's space sector more competitive.

Santiago comments: "ANSER has been developed using INTA's internal funding, but one of the most important strengths supporting our project over the past four years of work has been its selection for flight - after open competition with other European proposals - through the IOD/IOV Programme. With this support, ANSER could overcome various difficulties, including financial issues and the impact of the COVID pandemic, without losing sight of its main goal of in-orbit demonstration."

Vega flight VV23 is due for lift-off next week from Europe's Spaceport in French Guiana. Along with its main satellite payloads it carries multiple CubeSats including ESA's PRETTY mission investigating reflected satnav for environmental monitoring, the Proba-V Companion CubeSat testing the performance of a previously flown spectral imager aboard a CubeSat and other IOD/IOV CubeSats.

Related Links
Space Engineering and Technology at ESA
Microsat News and Nanosat News at SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MICROSAT BLITZ
Momentus to provide delivery service for Aarhus University payload
SAN JOSE, CA (SPX) Sep 20, 2023
Momentus Inc. (NASDAQ: MNTS) has signed a contract with Aarhus University for transportation and orbital delivery services in late 2024. Aarhus University will be flying its DISCO-II payload designed to provide climate monitoring. The university's DISCO-I payload was placed into Low-Earth Orbit during the Vigoride-6 mission that launched in April 2023. DISCO is the Danish Students CubeSat Program. "DISCO-2 will be the most ambitious student CubeSat mission in Denmark to date and students from thre ... read more

MICROSAT BLITZ
US slaps Satellite TV provider with first-ever space debris fine

German tech factory reveals antenna prototype-ngVLA will open a new window into the Universe

Data storage of tomorrow

US TV provider given first-ever space debris fine

MICROSAT BLITZ
BlueHalo expands US satellite operation capacity under Space Force SCAR Program

US Army awards Comtech $48M for future EDIM SATCOM solutions

SSC partners with Johns Hopkins for software best practices in protected SATCOM

Picogrid releases smallest AI-Enabled Command Station deployable in minutes

MICROSAT BLITZ
MICROSAT BLITZ
Trimble and Kyivstar to provide GNSS correction services in Ukraine

Galileo becomes faster for every user

Present and future of satellite navigation

New Galileo station goes on duty

MICROSAT BLITZ
Duke Field breaks ground on first electric aircraft charging station

Czech Republic to buy 24 US-made F-35 fighter jets

Boeing to pay $8.1M to resolve False Claims Act allegations on V-22 Osprey contracts

Australia retires Taipan helicopters after crash

MICROSAT BLITZ
EU moves to protect sensitive tech from rivals, China

Simulations reveal the atomic-scale story of qubits

New qubit circuit enables quantum operations with higher accuracy

System combines light and electrons to unlock faster, greener computing

MICROSAT BLITZ
NASA selects Commercial Smallsat Data Acquisition contractors

As Earth heats up, rain pours down

China launches its latest remote sensing satellite

Chinese researchers reveal how vegetation structure biases satellite observation

MICROSAT BLITZ
Massive low earth orbit communications satellites could disrupt astronomy

UN conference adopts plan to reduce chemicals harm

Vietnam jails climate activist for tax evasion; Thai court drops charges over murdered activist

US adopts plan to phase out single-use plastics at national parks

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.