Space Industry and Business News  
STELLAR CHEMISTRY
Using optical chaos to control the momentum of light
by Staff Writers
Boston MA (SPX) Oct 20, 2017


Coupling the optical fields from waveguides to the optical fields in whispering galleries in photonic circuits is like trying to transfer a package between a bike and a car on a highway. But, with chaos, the photons could be efficiently delivered to the optical mode. (Illustration courtesy of Yin Feng and Xuejun Huang)

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. One major hurdle is that light travels at different speeds and in different phases in different components of an integrated circuit. For light to couple between optical components, it needs to be moving at the same momentum.

Now, a team of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences, in collaboration with Peking University in Beijing, has demonstrated a new way to control the momentum of broadband light in a widely-used optical component known as a whispering gallery microcavity (WGM).

The paper, whose co-authors also include researchers from Washington University in Saint Louis, the California Institute of Technology, and the University of Magdeburg, is published in Science.

"The broadband optical chaos in microcavity is creating a universal tool to access many optical states," said Linbo Shao, a graduate student in the lab of Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering, at SEAS and co-first author of the paper. "Previously, researchers need multiple special optical elements to couple light in and out WGMs at different wavelengths, but by this work we can couple all color lights with a single optical coupler."

A WGM is a type of optical microresonator used in a wide variety of applications, from long-range transmission in optical fibers to quantum computing. WGMs are named for the whispering galleries of St. Paul's Cathedral in London, where an acoustic wave (a whisper) circulates inside a cavity (the dome) from a speaker on one side to a listener on the other. The similar phenomena occurs in the Echo Wall in the Temple of Heaven in China and in the whispering arch in Grand Central Station in New York City.

Optical whispering galleries work much the same way. Light waves trapped in a highly-confined, circular space - smaller than a strand of hair - orbit around the inside of the cavity. Like the whispering wall, the cavity traps and carries the wave.

However, it is difficult to couple the optical fields from waveguides to the optical fields in whispering galleries in photonic circuits because the waves are traveling at different speeds.

Think of a WGM as a highway roundabout and optical fields as UPS trucks. Now, imagine trying to transfer a package between two trucks while both are moving at different speeds. Impossible, right?

In order to solve for this difference of momentum - without breaking Newton's law of the conservation of momentum - the research team created a little chaos. By deforming the shape of the optical microresonator, the researchers were able to create and harness so-called chaotic channels, in which the angular momentum of light is not conserved and can change over time. By alternating the shape of the resonator, the momentum can be tuned; the resonator can be designed to match momentum between waveguides and WGMs. Importantly, the coupling is broadband and occurs between optical states that would otherwise not couple.

The research provides new applications for microcavity optics and photonics in optical quantum processing, optical storage and more.

"The work illustrates a fundamentally different approach to probe this important class of microresonators while also revealing beautiful physics relating to the subject of optical chaos," said Kerry Vahala, the Ted and Ginger Jenkins Professor of Information Science and Technology and Professor of Applied Physics at Cal Tech, who was not involved in this research.

Next, the team will explore the physics of optical chaos in other optical platforms and materials, including photonic crystals and diamonds.

STELLAR CHEMISTRY
Deep Space Communications via Faraway Photons
Pasadena CA (JPL) Oct 20, 2017
A spacecraft destined to explore a unique asteroid will also test new communication hardware that uses lasers instead of radio waves. The Deep Space Optical Communications (DSOC) package aboard NASA's Psyche mission utilizes photons - the fundamental particle of visible light - to transmit more data in a given amount of time. The DSOC goal is to increase spacecraft communications performan ... read more

Related Links
Harvard School of Engineering and Applied Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
The drop that's good to the very end

Study shows how rough microparticles can cause big problems

Chemical treatment improves quantum dot lasers

Missing link between new topological phases of matter discovered

STELLAR CHEMISTRY
82nd Airborne tests in-flight communication system for paratroopers

Harris supplying tactical radios to Navy, Marines

SES GS to Provide More MEO-enabled SATCOM Solutions for U.S. Government

L3 satellite terminals for Air National Guard

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Lockheed Martin's first GPS III Satellite receives green light from Air Force

exactEarth Announces Agreement with Alltek Marine to Expand Small Vessel Tracking Service Offering

BeiDou navigation to cover Belt and Road countries by 2018

China's BeiDou-3 satellites get new chips

STELLAR CHEMISTRY
State Dept. proposes $343B C-17 support contract with Kuwait

Hear This: 30 Percent Less Noise

Multiple countries set to receive new eyes in the sky for Apache attack helicopters

U.S. taps Elbit for pilot HUD display units

STELLAR CHEMISTRY
Bridging the terahertz gap

Spin current detection in quantum materials unlocks potential for alternative electronics

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale

India's TCS profits fall amid weak growth in retail, banking

STELLAR CHEMISTRY
Sentinel-5P: satellite in excellent health

Study casts doubt on warming implications of brown carbon aerosol from wildfires

Watching plant photosynthesis from space

China, France plan to launch first joint oceanic satellite in 2018

STELLAR CHEMISTRY
New Delhi shuts power plant in fight against Diwali smog

Delhi braces for pollution 'airpocalypse' as smog looms

Pollution killed nine million people in 2015: report

Scientists trace path of inland plastic pollution from rivers to oceanw/ll









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.