Space Industry and Business News  
CHIP TECH
Using graphene to create quantum bits
by Staff Writers
Lausanne, Switzerland (SPX) May 30, 2017


This is an insulating boron nitride sandwiched between two graphene sheets. Credit EPFL/ LPQM

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits - or qubits - that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based quantum capacitor, compatible with cryogenic conditions of superconducting circuits, and based on two-dimensional (2D) materials.

When connected to a circuit, this capacitor has the potential to produce stable qubits and also offers other advantages, such as being relatively easier to fabricate than many other known nonlinear cryogenic devices, and being much less sensitive to electromagnetic interference. This research was published in 2D Materials and Applications.

Normal digital computers operate on the basis of a binary code composed of bits with a value of either 0 or 1. In quantum computers, the bits are replaced by qubits, which can be in two states simultaneously, with arbitrary superposition. This significantly boosts their calculation and storage capacity for certain classes of applications. But making qubits is no mean feat: quantum phenomena require highly controlled conditions, including very low temperatures.

To produce stable qubits, one promising approach is to use superconducting circuits, most of which operate on the basis of the Josephson effect. Unfortunately, they are difficult to make and sensitive to perturbing stray magnetic fields. This means the ultimate circuit must be extremely well shielded both thermally and electromagnetically, which precludes compact integration.

At EPFL's LPQM, this idea of a capacitor that's easy to make, less bulky and less prone to interference has been explored. It consists of insulating boron nitride sandwiched between two graphene sheets. Thanks to this sandwich structure and graphene's unusual properties, the incoming charge is not proportional to the voltage that is generated.

This nonlinearity is a necessary step in the process of generating quantum bits. This device could significantly improve the way quantum information is processed but there are also other potential applications too. It could be used to create very nonlinear high-frequency circuits - all the way up to the terahertz regime - or for mixers, amplifiers, and ultra strong coupling between photons.

CHIP TECH
Testing quantum field theory in a quantum simulator
Vienna, Austria (SPX) May 26, 2017
What happened right after the beginning of the universe? How can we understand the structure of quantum materials? How does the Higgs-Mechanism work? Such fundamental questions can only be answered using quantum field theories. These theories do not describe particles independently from each other; all particles are seen as a collective field, permeating the whole universe. But these theor ... read more

Related Links
Ecole Polytechnique Federale de Lausanne
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

Two simple building blocks produce complex 3-D material

Achieving magnetic order in two-dimensional materials

Using light to rearrange macroscopic structures

CHIP TECH
Airbus further extends channel partner program for military satellite communications in Asia

Radio communications have surprising influence on Earth's near-space environment

Navy receiving data terminal sets from Leonardo DRS

European country orders Harris tactical radios

CHIP TECH
CHIP TECH
2 SOPS says goodbye to GPS satellite

Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

CHIP TECH
Super Hornets to get infrared search and track system

Sikorksy awarded contract for King Stallion helicopters

Military, civilian aviation leaders meet over pilot shortage issues

Northrop Grumman receives E-2D contract

CHIP TECH
Controlled creation of quantum emitter arrays

Using graphene to create quantum bits

A new spin on electronics

Memristor chips that see patterns over pixels

CHIP TECH
SES-14 integrates NASA ultraviolet space spectrograph

NASA's CYGNSS Satellite Constellation Begins Public Data Release

AU-EU joint space-based initiative calls for proposals

GSLV to launch US-India NISAR EO Satellite

CHIP TECH
Taiwan steel plant opens in Vietnam after fish deaths

Tough times for S.Africa town blighted by mine closure

37 million bits of litter on remote islands

Ozone and haze pollution weakens land carbon uptake in China









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.