Space Industry and Business News  
NANO TECH
Using atoms to turn optical nanofiber guided light on and off
by Staff Writers
Okinawa, Japan (SPX) Dec 11, 2015


The rubidium atoms are trapped around the optical nanofiber and absorb light of wavelength 780 nm and 776 nm that has leaked out of the nanofiber. This effect can be used to create on/off switches. Image courtesy OIST. For a larger version of this image please go here.

Researchers in the Light-Matter Interactions Unit led by Professor Sile Nic Chormaic at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed an on-off switch with ultrathin optical fibers, which could be used for data transfer in the future. This research was published in the New Journal of Physics.

010100000110100001 111001011100110110100 1011000110111001100100 000011010010111001 10010000001100110 0111010101101110 means "Physics is fun" in binary code. Computers translate every letter, number, sign, space, image and sound to a set of 8 ones and zeros. For example, 01010000 corresponds to the letter P. While you type, your computer transfers your words to another distant computer by sending a series of ones and zeros encoded in light through standard optical fibers.

Switching the light beam on and off very quickly generates the ones and zeros. These bits of information are converted to electronic signals at a node, usually a router or server, and finally appear as text on the screen of your recipient.

While this is the classical way of transferring information online, OIST researchers are exploring more efficient ways of transferring data, using the quantum properties of light and matter. They have managed to create an on/off switch based on the quantum characteristics of rubidium atoms in the presence of light of different wavelengths. This proof-of-concept system could be used as a building block in a quantum network, the future of our internet.

The OIST team's experimental setup consists of two lasers that produce light at different wavelengths, an optical nanofiber used to guide light, and rubidium atoms trapped around it. The peculiarity of optical nanofibers is their super-thin diameter. For this study the diameter was 350 nanometers, about 300 times thinner than the thickness of a sheet of paper.

The diameter is even smaller than the wavelength of the light guided by the fiber. Some of the light, therefore, leaks outside the nanofiber and interacts with the rubidium atoms that are trapped around it. These atoms can function as a quantum node, a redistribution point of a network, the equivalent of today's servers.

The off switch condition is obtained when only the laser producing 780 nm is on. In this case, at the point where light leaks outside of the optical nanofiber, the rubidium atoms absorb the maximum amount of light and almost no light can continue to pass along the fiber. In contrast, the switch is turned on when both 776 nm and 780 nm lights are present. In this situation, most of the light is transmitted through the optical nanofiber and the rubidium atoms absorb it only minimally.

Since the optical nanofiber is directly connected to a standard optical fiber, the light can, in principle, be transferred to another quantum system or node some distance away, in the same way you can send a message from your computer to that of your friend's in another location.

"Using optical nanofibers would allow us to fully integrate our system with existing fiber-based communication networks. While the current work is far from being a practical solution to quantum information, it brings the notion of using atoms and light to develop real devices based on quantum mechanics ever closer to fulfilment", explains Professor Sile Nic Chormaic.

While the experiment at OIST currently only generates zeros/off and ones/on consecutively, further exploitation of the quantum behavior of atoms should allow the research team to send light as a combination of "on" and "off" at the same time. In this way, in the future, quantum networks will be able to process more data simultaneously, increase efficiency of information transfer and also provide better cyber security.

"It has been very exciting to work with optical nanofibers which can guide light extremely efficiently even if their diameter is much smaller than the wavelength of light itself. These systems are sure to give us significant progress in quantum networks in the years to come," enthuses Ravi Kumar, one of the authors of this study and a PhD student at University College Cork in Ireland, doing his research work at OIST.

(For formatting reasons the binary number above has been broken into smaller pieces)


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanotube letters spell progress
Houston TX (SPX) Dec 12, 2015
Never mind the ABCs. Rice University scientists interested in nanotubes are studying their XYOs. Carbon nanotubes grown in a furnace aren't always straight. Sometimes they curve and kink, and sometimes they branch off in several directions. The Rice researchers realized they now had the tools available to examine just how tough those branches are. They used experiments and simulations to s ... read more


NANO TECH
Seeking a new generation of light-based sensing systems

'Al dente' fibers could make bulletproof vests stronger and 'greener'

New understanding of how shape and form develop in nature

On-the-go ultrahigh vacuum storage systems

NANO TECH
Pentagon to move forward with JSTARS recapitalization

U.S. Air Force awards Raytheon C-130 radio upgrade contract

L-3 Communications to sell National Security Solutions business to CACI

Intelsat General applies best defense is a good offense to prevent jamming

NANO TECH
GSDO review marks progress for KSC's modernization

SpaceX to launch rocket Dec 19, six months after blast

45th Space Wing supports NASA's Orbital ATK CRS-4 launch

Orbital cargo ship blasts off toward space station

NANO TECH
US Air Force General Blasts Raytheon's 'Disaster' GPS Control System

Russian Defense Ministry Conducts Final GLONASS Tests- Developer

India's GPS system will have better accuracy says ISRO

Pentagon to re-examine Air Force GPS OCX program

NANO TECH
Germany receives first two H145M helicopters

Northrop Grumman delivers center fuselage for first Japanese F-35

Australia selects Lockheed Martin to develop pilot training system

Putin invites British experts to help analyse black box of downed warplane

NANO TECH
Atomically flat tunnel transistor overcomes fundamental power challenge

Spin current on topological insulator detected at room temps

Quantum computer made of standard semiconductor materials

A quantum spin on molecular computers

NANO TECH
Ames and Hera Systems Execute Licensing Agreement

NASA spots phytoplankton bloom in North Atlantic

Is That a Forest? That Depends on How You Define It

Timelapse from space reveals glacier in motion

NANO TECH
Beijing lifts smog red alert

Montreal bans plastic bags

Pollution whips up hazardous foam in Mexican river

Coughing and unwell, Beijing patients lament smog









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.