Space Industry and Business News  
ROCKET SCIENCE
Using Rocket Science To Make Wastewater Treatment Sustainable

Stanford engineer Brian Cantwell and colleagues originally designed this nitrous oxide thruster for spacecraft. A similar device could be used at wastewater treatment plants to decompose excess nitrous oxide gas into hot air. Courtesy of Brian Cantwell.
by Daniel Strain And Mark Shwartz
Stanford CA (SPX) Jul 28, 2010
Within the sludge of wastewater treatment plants is an invisible world teeming with microbes. Here, diverse species of bacteria convert solid and liquid wastes into gases, some of which contribute to global warming.

Now two Stanford University engineers are developing a new sewage treatment process that would actually increase the production of two greenhouse gases - nitrous oxide (aka "laughing gas") and methane - and use the gases to power the treatment plant.

"Normally, we want to discourage these gases from forming," said Craig Criddle, a professor of civil and environmental engineering and senior fellow at the Woods Institute for the Environment at Stanford.

"But by encouraging the formation of nitrous oxide, we can remove harmful nitrogen from the water and simultaneously increase methane production for use as fuel."

Criddle, an expert in wastewater management, has joined forces with Brian Cantwell, a professor of aeronautics and astronautics, who has spent the last five years designing rocket thrusters that run on nitrous oxide.

With support from a Woods Institute Environmental Venture Projects grant, Cantwell and Criddle are applying that rocket technology to sewage treatment, with the goal of making the process energy neutral and emissions free.

"We want to reduce the cost of wastewater treatment, increase energy generation and eliminate greenhouse gas emissions," Cantwell said.

"For too long we've thought of treatment plants as places where we remove organic matter and waste nitrogen," Criddle added. "We need to view these wastes as resources, not simply something to dispose of."

Microbial zoo
For Criddle and Cantwell, the first step in building a green treatment plant is growing the right kind of bacteria. "We're really managing a zoo," Criddle said. "To get the right microbes, we need to encourage the growth of bacteria that produce nitrous oxide gas."

One way to accomplish that is by reducing the bacteria's oxygen supply, he said. Conventional treatment plants pump air into wastewater sludge - a process called aeration. The idea is to convert nitrogen waste into harmless nitrogen gas by promoting oxygen-loving bacteria that thrive on sugars and other organic matter in the sludge.

But aeration is a costly and energy-intensive process. As an alternative, the Stanford team wants to create a low-oxygen environment in the treatment plant, where nitrous oxide-producing bacteria are favored while aerobic species die off.

These nitrous oxide producers consume relatively small amounts of organic matter. That's good news for other anaerobic microbes that produce methane gas by feasting on organic compounds.

"When bacteria make nitrous oxide, less organic matter is oxidized, so more can be converted into methane - potentially two or three times more than is possible in a typical treatment plant," Criddle said. "That extra methane can be used as fuel to run the plant independent of outside power sources."

Using less oxygen also could reduce costs, Cantwell added. "In a typical treatment plant, aeration is responsible for about half of the operating expenses," he said. "So pumping less oxygen could save a lot of money."

Rocket science
In recent experiments, the researchers demonstrated that under laboratory conditions nitrous oxide gas could be produced from wastewater using a low-oxygen technique. But there's a downside to the process. Nitrous oxide is a significant greenhouse gas that's more than 300 times more potent than carbon dioxide.

That's where Cantwell's rocket thruster comes in. Designed for use in spacecraft, the thruster runs on nitrous oxide - a surprisingly clean-burning propellant.

"When it decomposes, nitrous oxide breaks down into pure nitrogen and oxygen gas," Cantwell explained. "At the same time, it releases enough energy to heat an engine to almost 3,000 degrees Fahrenheit, making it red hot, and it shoots out of the engine at almost 5,000 feet per second, producing enough thrust to propel a rocket."

In 2008, Yaniv Scherson, one of Cantwell's graduate students, was looking for a suitable topic for a doctoral thesis that would incorporate the thruster research.

"We wondered whether nitrous oxide could be exploited as an emissions-free source of energy," Cantwell said. "Since the product of the decomposition reaction is simply oxygen-enriched air, energy is generated with zero production of greenhouse gas. But first we needed to find a cheap, plentiful source of nitrous oxide."

Scherson eventually turned to Criddle, who had spent years studying microbial communities in wastewater treatment plants. Criddle explained that wastewater sludge contains bacteria that naturally convert nitrogen wastes into nitrous oxide, providing Scherson a cheap source of the gas.

Soon, Scherson, Criddle and Cantwell joined forces in a unique experiment bridging two very different fields - space propulsion and environmental biotechnology. "It took a couple of rocket scientists to make this happen," Criddle said.

The result was a novel design with the potential for treating the world's wastewater: First, reduce oxygen levels at the treatment plant to encourage the production of nitrous oxide and methane gas. Then use the extra methane to power the plant and a small rocket thruster to break down the nitrous oxide into clean, hot air.

"A single thruster about the size of a basketball could potentially consume every ounce of nitrous oxide produced by a typical treatment plant," Cantwell said.

New generation
Most treatment plants in the United States are using technology developed in the 1970s and are in dire need of an overhaul, according to Criddle. "In the U.S., we haven't invested much in wastewater treatment in recent decades," he said.

Cantwell envisions a new generation of plants that are energy self-sufficient. "You even have the prospect of installing a wastewater facility where there is no energy source," he said. "This could be especially important in the Third World, where millions of people live with contaminated water."

Both researchers say that the technology could have other applications beyond wastewater treatment. For example, they also want to explore ways to recover energy from nitrate-contaminated groundwater beneath fertilized agricultural fields. "We're thinking very broadly about all the ways nitrogen gets into the environment and how we can exploit it," Cantwell said.

"If successful, this technology could be a game changer, with the potential for worldwide impact on several fronts," Criddle said.

Restoring the Earth's nitrogen cycle
The world's supply of nitrogen exists in a never-ending loop, moving from the atmosphere to nitrogen-fixing bacteria to plants and animals, then back to bacteria and, eventually, to the air.

But humans have broken this natural cycle, according to Criddle. "We now take more nitrogen from the air, mostly through the manufacture of agricultural fertilizers, than we give back," he said.

Tons of excess nitrogen fertilizer also flow into groundwater, rivers and eventually out to sea, where it feeds massive algal blooms that can damage marine ecosystems. Nitrogen also impacts human health. Too much nitrate in drinking water can be harmful to infants and pregnant women, according to the Centers for Disease Control.

"Slowly but surely the world is being contaminated with waste nitrogen," Cantwell said. "Restoring the balance is a critical thing to do for the future of the planet."

Farmers lose money when nitrogen is wasted, Criddle added. "But with the right technology, the balance of the nitrogen cycle can be restored and value recovered from waste nitrogen," he said.

And Criddle looks forward to a world where nitrogen once again runs in a sustainable loop - and at a profit.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Stanford University
Rocket Science News at Space-Travel.Com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


ROCKET SCIENCE
U.S. students win rocket challenge in U.K.
Farnborough, England (UPI) Jul 26, 2010
A team of Pennsylvania students won first place in the third annual Transatlantic Rocketry Challenge in Farnborough, England, officials say. The four-member team from Penn Manor High School in Millersville, Pa., beat out student rocket teams from the United Kingdom and France in the competition held at the 2010 Farnborough International Airshow, SPACE.com reported Friday. Separat ... read more







ROCKET SCIENCE
Scots Engineers Prove Space Pioneer's 25-Year-Old Theory

Sweden's Larsson first to sell one million Kindle books

Goodbye mouse, Apple's 'Magic Trackpad' goes on sale

iPhone faces rising challenge from Android handsets: analyst

ROCKET SCIENCE
Raytheon's ASTOR Saving Lives In The Counterinsurgency Battle

Testing Of Australia's Network Centric Command And Control System Completed

Thales UK wins Congo army radio contract

Savi Ships Compact Mobile Tracking Systems For Marine Afghan Forces

ROCKET SCIENCE
ISRO To Launch GSLV With Cryo Engine Within An Year

Ariane 5 Is Ready For Its Payload Integration

NASA Tests Launch Abort System At Supersonic Speeds

Sea Launch Signs Launch Agreement With AsiaSat

ROCKET SCIENCE
ITT Navigation Payload Passes Key Milestone For Next Gen GPS Satellite

Lynden Transport Offers Real Time GPS Mapping For Tracking Shipments

Nationwide Insurance Provides Bait Vehicles To Houston Law Enforcement Agencies

Magellan Launches Next Gen Of eXplorist

ROCKET SCIENCE
Spanish military may replace absent air traffic controllers

China jumbo jet maker picks GE, Eaton as suppliers

Swiss solar plane makes history with round-the-clock flight

Solar Impulse plane packed with technology

ROCKET SCIENCE
Protein From Poplar Trees Can Be Used To Greatly Increase Computer Capacity

Polymer Synthesis Could Aid Future Electronics

Acer, Asus and Lenovo lead pack as PC sales surge

Intel posts 'best quarter' ever

ROCKET SCIENCE
Integral Systems Helps DigitalGlobe Enhance Earth Imaging Download Capacity

Cluster Makes Crucial Step In Understanding Space Weather

NASA Satellite Improves Pollution Monitoring

Antarctica Traced From Space

ROCKET SCIENCE
Battle to save Gulf sea turtles from oily death

Nigeria records 3,000 oil spills since 2006: minister

Storm may help dissolve US Gulf oil mess

Indonesia seeks Montara leak compensation


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement