Space Industry and Business News  
EXO WORLDS
Unusual molecular and isotopic content of planetary nebulae
by Staff Writers
Swarthmore PA (SPX) Jun 02, 2020

illustration only

Observations of planetary nebulae have revealed unusual molecular content and surprising enrichments of rare isotopes, challenging both chemical models as well as our current understanding of stellar nucleosynthesis.

Using the Arizona Radio Observatory 12-m and submillimeter telescopes and the IRAM 30-m telescope near Granada, Spain, astronomers at the University of Arizona discovered an unexpected chemical inventory in planetary nebulae. These results, presented at the 236th meeting of the American Astronomical Society by Deborah Schmidt (now at Swarthmore College), suggest that planetary nebulae play a vital role in supplying interstellar space with material rich in molecules, not just atoms.

Further, the molecular data have revealed unusual enrichments of rare isotopes of common elements such as carbon, oxygen, and nitrogen, including 13C, 15N, and 17O. The high abundances of these unusual isotopes in planetary nebulae cannot be explained by our current understanding of how most stars die, suggesting additional processes, even violent explosions, may be occurring.

Planetary nebulae represent the last gasps of dying Sun-like stars. At the end of their lives, these stars eject their outer layers, forming a brilliantly fluorescing envelope which expands away from the remnant core. This ejecta mixes in with the low-density matter that exists between stars, known as the interstellar medium, where it may later be incorporated into newly forming stellar systems.

The vestigial core, called a white dwarf, emits copious amounts of high-energy radiation as its temperature increases into the planetary nebula phase. As a result, it was long thought that the nebular material should be elemental in composition, with any molecules remaining from earlier stages in the star's life being destroyed by the energetic photons from the white dwarf.

At complete odds with these model predictions, observations conducted by Schmidt as part of her dissertation work at the University of Arizona unearthed a wealth of unusual molecular species in over 25 planetary nebulae.

These results unambiguously demonstrate that molecules are important components of the composition of planetary nebulae, and they may subsequently be "polluting" the diffuse interstellar medium. Historically, astronomers have struggled to explain the abundances of the polyatomic molecules observed in diffuse gas, as there is not enough dense material to create them on a realistic timescale. The discoveries of Schmidt et al. suggests a novel solution for this ongoing dilemma.

The molecular observations of these planetary nebulae also offer unique insight into the nuclear reactions that occurred in the progenitor star, and the elements and their different nuclei that were produced. This is because observations at radio and millimeter wavelengths are conducted with the highest spectral resolution, allowing molecules with different elements and isotopes to be clearly distinguished.

Schmidt and colleagues discovered that the molecules they have found indicate whether the progenitor star was rich in carbon, for example. Furthermore, they have been able to measure abundance ratios between the main element and its rarer forms, such as 12C/13C or 14N/15N. Such ratios are known to be sensitive probes of the processes that occurred deep within the star before it died, and have been used as one of the few "benchmarks" for testing stellar modeling. Now, for the first time, they can be accurately measured in planetary nebulae, giving a "snapshot" of the star's final stages.

What did the observations reveal in planetary nebulae? Lots of carbon, first of all, along with high abundances of 13C, and in one nebula, K4-47, hugely elevated amounts of 15N and 17O - higher than observed anywhere else in the universe (Schmidt et al. 2018). The high concentrations of 13C, 15N, and 17O observed in planetary nebulae have not been predicted by models of dying stars.

Specifically, Schmidt and collaborators suggest that the progenitor stars of these planetary nebulae may have undergone an unexpected event as they made their last "gasps" - a helium shell flash, in which hot carbon from deep within the star is blown out to the stellar surface. In the violent explosion that occurs, 13C, 15N, and 17O are created and ejected from the star. Such an energetic process can also explain the unusual bipolar and multipolar geometries typically exhibited by planetary nebulae, giving them their "hourglass" and "cloverleaf" shapes.

Dying stars also produce dust grains. Some of these grains have actually made their way to our solar system, where researchers such as collaborator Thomas Zega extract them from pristine meteorites. Elemental isotopes can be measured in these so-called "presolar" grains, providing a Rosetta Stone of their history. Some of these grains have been found to exhibit consistently low 12C/13C, 14N/15N, and 16O/17O ratios - a puzzle for cosmochemists, as these ratios cannot be explained by normal models.

For lack of a better explanation, it has been speculated that these atypical grains originated in novae, a type of thermonuclear explosion which occurs on the surface of the low-mass stellar remnants in binary systems. Their unusual ratios, however, match those found in K4-47, suggesting that planetary nebulae are their true birthplaces.

Planetary nebulae supply most of the matter found in interstellar space, which subsequently leads to stellar systems like our own. The work of Schmidt and colleagues has shown that these objects contain hidden molecules and elemental isotopes, invisible in the colorful images that portray them. Exploring these new, unexpected facets of planetary nebulae is crucial to our understanding of the history of stars and the evolution of matter that formed our solar system.

Research Report: "The Unexpected Molecular Complexity of Planetary Nebulae as Revealed by Millimeter-wave Observations"


Related Links
IRAM 30-meter telescope
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
In Planet Formation, It's Location, Location, Location
Baltimore MD (SPX) May 29, 2020
Astronomers using NASA's Hubble Space Telescope are finding that planets have a tough time forming in the rough-and-tumble central region of the massive, crowded star cluster Westerlund 2. Located 20,000 light-years away, Westerlund 2 is a unique laboratory to study stellar evolutionary processes because it's relatively nearby, quite young, and contains a large stellar population. A three-year Hubble study of stars in Westerlund 2 revealed that the precursors to planet-forming disks encircling sta ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Kyoto scientists announce a 'nuclear' periodic table

SpaceChain invests in Core Semiconductor to drive open Direct Satellite-to-Devices Communication

UK commits new funding to combat space debris

Designing a flexible material to protect buildings, military personnel

EXO WORLDS
UK nears final stage of Skynet satellite contract competition

Roccor creates Helical L-Band Antenna for first-ever space demonstration of Link 16 Networks

NIST researchers boost microwave signal stability a hundredfold

IBCS Goes Agile

EXO WORLDS
EXO WORLDS
Harnessing space to save lives at sea

Out-of-the-box spoofing mitigation with Galileo's OS-NMA service

Galileo in high latitudes and harsh environments

New BeiDou satellite starts operation in network

EXO WORLDS
Sirkorsky awarded $17.9M modification for work on the H-53K

U.S. Air Force scales back fitness testing, citing COVID-19 concerns

AFRL, AFSOC launch palletized weapons from cargo plane

F-35 costs falling, Pentagon estimates indicate

EXO WORLDS
DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

Xilinx 'lifts off' with launch of industry's first 20nm space-grade FPGA for space applications

'One-way' electronic devices enter the mainstream

Huawei says 'survival' at stake after US chip restrictions

EXO WORLDS
Calling for ideas for next Earth Explorer

NASA's AIM Spots First Arctic Noctilucent Clouds of the Season

Volcanic eruptions reduce global rainfall

ESA's oldest Earth-observer images Delhi airport

EXO WORLDS
Gold mining with mercury threatens health of communities miles downstream

Copenhagen under fire over massive sewage dump

Amazon shareholders reject dissident moves to reshape company

Bulgarian minister charged over illegal waste imports from Italy









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.