Subscribe free to our newsletters via your
. Space Industry and Business News .




ENERGY TECH
Unravelling the mysteries of carbonic acid
by Staff Writers
Berkeley CA (SPX) Jun 22, 2015


When gaseous carbon dioxide is dissolved in water, its hydrophobic nature carves out a cylindrical cavity, setting the stage for the proton transfer reactions that produce carbonic acid. Image courtesy of Richard Saykally, Berkeley Lab/ UC Berkeley. For a larger version of this image please go here.

Blink your eyes and it's long gone. Carbonic acid exists for only a tiny fraction of a second when carbon dioxide gas dissolves in water before changing into a mix of protons and bicarbonate anions. Despite its short life, however, carbonic acid imparts a lasting impact on Earth's atmosphere and geology, as well as on the human body.

However, because of its short lifespan, the detailed chemistry of carbonic acid has long been veiled in mystery. Researchers with Berkeley Lab and the University of California (UC) Berkeley are helping to lift this veil through a series of unique experiments. In their latest study, they've shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.

'Through a combination of X-ray absorption spectroscopy (XAS), theoretical modeling and computational simulations, we're able to report the first detailed characterization of the hydration structure of carbon dioxide gas dissolved in water,' says Richard Saykally, a chemist with Berkeley Lab's Chemical Sciences Division and professor of chemistry at UC Berkeley who leads this research.

'Our results will help improve future theoretical modeling of this crucial chemistry by characterizing the initial state of the proton transfer reactions that occur in water.

'This latest work follows a separate recent study in which the hydration structure of carbonic acid itself was characterized. Ultimately, such studies will lead to a complete understanding of how atmospheric carbon dioxide is captured and transformed by ocean surfaces, a crucial role in the carbon cycle.

They will also enable us to address how bicarbonate anions interact with calcium and magnesium cations in solution to create the nanoclusters that nucleate limestone formation, and how bicarbonate anions buffer blood and other bodily fluids.'

Saykally and his research group have overcome the challenge of carbonic acid's short lifetime - about 26 milliseconds - by developing a unique liquid microjet mixing technology. In this technology, two aqueous samples rapidly mix and flow through a finely tipped nozzle that is made from fused silica and features an opening only a few micrometers in diameter. The resulting liquid beam is injected into a vacuum chamber and intersected by an X-ray beam before being collected and frozen out.

Saykally and his group installed their liquid microjet system at Berkeley Lab's Advanced Light Source (ALS), an electron accelerator/storage ring that serves as a premier source of X-ray beams for scientific research. In earlier experiments, they used their microjet system and XAS technique to characterize the hydration structures of aqueous carbonate and bicarbonate.

In this new study, Saykally and his group were able to capture the XAS spectrum of carbon dioxide gas dissolved in water. All of these experiments were performed at ALS Beamline 8.0.1, a high flux undulator beamline that generates X-ray beams optimized for XAS studies.

Saykally and his colleagues determined the hydration structure of carbon dioxide in water by using their XAS spectral data in conjunction with molecular dynamics simulations carried out under the leadership of David Prendergast, a staff scientist in the Theory of Nanostructures Facility at Berkeley Lab's Molecular Foundry.

Calculations were performed utilizing the supercomputer resources of the National Energy Research Scientific Computing Center (NERSC). The ALS, the Molecular Foundry and NERSC are all national user facilities funded by the U.S. Department of Energy (DOE)'s Office of Science.

The results of this study show that the carbonic acid molecule acts as a hydrophobe with an average hydrogen bond number of 0.56. The carbon atom interacts weakly with the oxygen of a single water molecule at a distance of greater than 2.67 Angstroms, and the carbonyl oxygens serve as weak hydrogen bond acceptors. The result is an enhanced tetrahedral water/hydrogen bonding structure, with a local cylindrical cavity carved out in the water solvent.

'Calculated spectral energy shifts and intensities between aqueous carbonic acid, dissolved carbon dioxide and gaseous carbon dioxide correspond well with our experimentally measured spectra,' Saykally says. 'In future studies, we will focus on resolving some limitations of our current experimental design and the limitations of molecular dynamics modeling through the implementation of higher level ab initio theories.

The results of this latest study have been published as an Editor's Choice feature article in Chemical Physical Letters. The paper is titled 'The hydration structure of dissolved carbon dioxide from X-Ray absorption spectroscopy.' Saykally is the corresponding author. Other co-authors, in addition to Prendergast, are Royce Lam, Alice England, Jacob Smith, Anthony Rizzuto and Orion Shih.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Graphene gets bright with ultra thin lightbulb
New York NY (SPX) Jun 18, 2015
Led by Young Duck Kim, a postdoctoral research scientist in James Hone's group at Columbia Engineering, a team of scientists from Columbia, Seoul National University (SNU), and Korea Research Institute of Standards and Science (KRISS) reported that they have demonstrated - for the first time - an on-chip visible light source using graphene, an atomically thin and perfectly crystalline form of ca ... read more


ENERGY TECH
Video game titans get back in stride at E3

Robot to 3D-print steel canal bridge in Amsterdam

University of Cincinnati, industry partners develop low-cost, 'tunable' window tintings

Radar system approved for allies

ENERGY TECH
US nuclear bombers lack satellite terminals for emergencies

New USAF satellites to use updated spacecraft

Harris providing Australia with support for radio system

US Navy accepts third LMC-Built MUOS comsat

ENERGY TECH
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

ENERGY TECH
Russia Begins Mass Production of Glonass-K1 Navigation Satellites

Russia, China Plan to Equip Commercial Trucks With Glonass, BeiDou

GLONASS to Go on Stream in 2015

Satellites make a load of difference to bridge safety

ENERGY TECH
Green love-in at Paris Air Show but weaker sales

Jacobs Engineering continues work on Australian F-35 bases

France says India to seal deal on Rafale jets in '2 to 3 months'

UTC to rid itself of Sikorsky Aircraft

ENERGY TECH
New boron compounds for organic light-emitting diodes

Exploiting the extraordinary properties of a new semiconductor

Futuristic components on silicon chips, fabricated successfully

New chip makes testing for antibiotic-resistant bacteria faster, easier

ENERGY TECH
EOMAP provides shallow water bathymetry for the South China Sea

New calculations to improve CO2 monitoring from space

BlackSky Global reveals plan to image Earth in near real-time

NASA Releases Detailed Global Climate Change Projections

ENERGY TECH
Scientists help public avoid health risks of toxic blue-green algae

Light pollution threatens the Balearic shearwater

New tool better protects beachgoers from harmful bacteria levels

Ocean garbage scoop study to start off Japan coast




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.