Space Industry and Business News  
ENERGY TECH
Unexpected effect could lead to lower-power memory, computing devices
by Staff Writers
Washington DC (SPX) Mar 21, 2018

This is an illustration of an unexpected phenomenon known as zero field switching (ZFS) that could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron magnet (CoFeB) sandwiched at the ends by gold (Au) electrodes on a silicon (Si) surface. The gray arrows depict the overall direction of electric current injected into the structure at the back of the gold (Au) contact and coming out the front gold contact pad. The CoFeB layer is a nanometer-thick magnet that stores a bit of data. A "1" corresponds to the CoFeB magnetization pointing up (up arrow), and a "0" represents the magnetization pointing down (down arrow).

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron magnet (CoFeB) sandwiched at the ends by gold (Au) electrodes on a silicon (Si) surface. The gray arrows depict the overall direction of electric current injected into the structure at the back of the gold (Au) contact and coming out the front gold contact pad.

The CoFeB layer is a nanometer-thick magnet that stores a bit of data. A "1" corresponds to the CoFeB magnetization pointing up (up arrow), and a "0" represents the magnetization pointing down (down arrow). The "0" or "1" can be read both electrically and optically, as the magnetization changes the reflectivity of light shining on the material through another phenomenon known as the magneto-optical Kerr effect (MOKE).

In the device, electric current can flip the data state between 0 and 1. Previous devices of this type have also required a magnetic field or other more complex measures to change the material's magnetization. Those earlier devices are not very useful for building stable, non-volatile memory devices.

A breakthrough occurred in a research collaboration between The Johns Hopkins University and NIST. The team discovered that they could flip the CoFeB magnetization in a stable fashion between the 0 and 1 states by sending only electric current through the Pt and W metal layers adjacent to the CoFeB nanomagnet. They did not need a magnetic field. This ZFS (zero-field switching) effect was a surprise and had not been theoretically predicted.

In their work, the researchers created a special kind of electric current known as a "spin" current. The electrons that carry electric current possess a property known as spin which can be imagined as a bar magnet pointing in a specific direction through the electron. Increasingly exploited in the emerging field known as "spintronics," spin current is simply electric current in which the spins of the electrons are pointing in the same direction.

As an electron moves through the material, the interaction between its spin and its motion (called a spin-orbit torque, SOT) creates a spin current where electrons with one spin state move perpendicular to the current in one direction and electrons with the opposite spin state move in the opposite direction.

The resulting spins that have moved adjacent to the CoFeB magnetic layer exert a torque on that layer, causing its magnetization to be flipped. Without the spin current the CoFeB magnetization is stable against any fluctuations in current and temperature. This unexpected ZFS effect poses new questions to theorists about the underlying mechanism of the observed SOT-induced switching phenomenon.

Details of the spin-orbit torque are illustrated in the diagram. The purple arrows show the spins of the electrons in each layer. The blue curved arrow shows the direction in which spins of that type are being diverted. (For example, in the W layer, electrons with spin to the left in the x-y plane are diverted to move upward toward the CoFeB and the electron spins to the right are diverted to move down toward the Pt.)

Note the electron spins in the Pt with spin to the right (in the x-y plane), however, are diverted to move upward toward the W and the electron spins with spin to the left are diverted to move downward toward the Si.

This is opposite to the direction the electron spins in the W are moving, and this is due to differences in the SOT experienced by electrons moving through Pt and those moving through W. In fact, it is this difference in the way the electrons move through each of these two conductors that may be important to enabling the unusual ZFS effect.

The research team, including NIST scientists Daniel Gopman, Robert Shull, and NIST guest researcher Yury Kabanov, and The Johns Hopkins University researchers Qinli Ma, Yufan Li and Professor Chia-Ling Chien, report their findings in Physical Review Letters.

Ongoing investigations by the researchers seek to identify other prospective materials that enable zero-field-switching of a single perpendicular nanomagnet, as well as determining how the ZFS behavior changes for nanomagnets possessing smaller lateral sizes and developing the theoretical foundation for this unexpected switching phenomenon.

Research paper


Related Links
National Institute of Standards and Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Study IDs 'white graphene' architecture with unprecedented hydrogen storage capacity
Houston TX (SPX) Mar 20, 2018
Rice University engineers have zeroed in on the optimal architecture for storing hydrogen in "white graphene" nanomaterials - a design like a Lilliputian skyscraper with "floors" of boron nitride sitting one atop another and held precisely 5.2 angstroms apart by boron nitride pillars. The results appear in the journal Small. "The motivation is to create an efficient material that can take up and hold a lot of hydrogen - both by volume and weight - and that can quickly and easily release that ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
New 'AR' Mobile App Features 3-D NASA Spacecraft

Diamond powers first continuous room-temperature solid-state maser

Reconsidering damage production and radiation mixing in materials

Raytheon contracted for Cobra Dane radar support

ENERGY TECH
Intelsat EpicNG helping redefine capabilities of airborne applications

Studies prove superior performance of HTS for government customers

Airbus to provide near real-time access to its satellite data

Increasing Situational Awareness with Fortion TacticalC2

ENERGY TECH
ENERGY TECH
Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

ENERGY TECH
Lockheed Martin to support F-35 programs in U.S., U.K.

Navy awards Lockheed $481M for F-35 spare parts

NASA Glenn tests aircraft engines in an ice crystal environment

Sierra Nevada awarded $20M for aircraft logistics support

ENERGY TECH
Intel says chips addressing flaws set for release this year

Precision atom qubits achieve major quantum computing milestone

Largest molecular spin found close to a quantum phase transition

Researchers find 'critical' security flaws in AMD chips

ENERGY TECH
Diamonds from the deep: Study suggests water may exist in Earth's lower mantle

Scientists find seismic imaging is blind to water

China launches land exploration satellite

ESA testing detection of floating plastic litter from orbit

ENERGY TECH
Researchers create a protein 'mat' that can soak up pollution

Paris to study pollution-busting free transport

Large-scale climatic warming could increase persistent haze in Beijing

Researchers turn plastic pollution into cleaners









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.