Space Industry and Business News  
TECH SPACE
Uncovering the secrets of water and ice as materials
by Staff Writers
Washington DC (SPX) Dec 13, 2016


File image.

Water is vital to life on Earth and its importance simply can't be overstated - it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains unknown about water and its many solid phases, which display a plethora of unusual properties and so-called anomalies that, while central to water's chemical and biological importance, are often viewed as controversial.

This inspired researchers at University College London and Oxford University to pursue a better understanding of water and ice as materials, which has a far-reaching impact on many areas of research. In an article in The Journal of Chemical Physics, from AIP Publishing, they report their work on the hydrogen ordering of the disordered ice VI phase relative to its ordered counterpart ice XV.

"Whenever liquid water freezes, only its oxygen atoms actually end up in fixed positions," explained Christoph G. Salzmann, associate professor and Royal Society Research Fellow, Department of Chemistry, University College London. "The hydrogen atoms remain disordered - so we call such phases of ice 'hydrogen disordered.' Upon cooling, the hydrogen atoms are expected to become ordered and result in hydrogen-ordered ices. Yet, this process is difficult because the reorientations of the hydrogen-bonded water molecules are highly cooperative."

To help explain the concept, he used a tile game as an analogy.

"Moving from disorder to order is difficult work because the tiles can't move independently - similar to the situation in ice," he said. "But, a few years ago, we found that adding a small amount of hydrochloric acid dramatically helps achieve hydrogen order at low temperatures."

Hydrochloric acid is the "magic ingredient" that speeds up the reorientations of the water molecules.

Ice VI and ice XV are both high-pressure phases of ice that form at about 10,000 atmospheres. "The structure of ice XV has been the topic of lively scientific discussion for years," Salzmann said. "A variety of different and, in part, conflicting models have been suggested from both experimental data - including a previous study by our group - as well as computational studies."

For this work, the researchers turned to neutron diffraction to analyze the structure of ice XV and its formation from ice VI. "Using neutrons is important because X-rays are essentially 'blind' toward hydrogen atoms," Salzmann said. "To fully solve the structure of ice XV, we really need to know where the hydrogen atoms are located - neutrons are essential."

The group's work represents a major change in the understanding of ice XV that consolidates much of their previous work. "First, we've shown using neutron diffraction at the ISIS Science and Technology Facilities Council in the U.K. that the ice shrinks in two directions, but expands in the third during the transition from ice VI to XV," he explained. "Using density functional theory calculations, we can show that only one particular structural model of ice XV is consistent with these changes."

Incidentally, this structure is also the one the group proposed from their in-depth analysis of neutron data.

"This agreement between experiment and calculations is great, in particular, because there have been conflicting views regarding ice XV," he added. "The overall volume of the ice increases during the phase transition, which finally explains why the transition is observed more readily at ambient pressure than at higher pressures - behavior that has puzzled us for a long time."

Another key point, presented in their article, is a new computer program called "RandomIce," which has produced the best structural description of ice XV to date. "We've presented the preparation of the most ordered ice XV to date, but we haven't achieved a completely ordered state," Salzmann said.

RandomIce enables preparing large-scale molecular models, which the group calls "supercells." These are consistent with the average structure obtained from the diffraction data, and essentially RandomIce is "playing" the tile game described earlier until the best agreement with the diffraction data is achieved. "To do this, more than 100 million 'tile moves' were necessary," Salzmann pointed out.

The group's work opens the door to the development of more accurate computer models of water that can benefit a wide range of disciplines - from biology and chemistry to geology and the atmospheric sciences.

Further, it's now possible to "clarify in which form ice is expected to occur under certain pressure and temperature conditions inside icy moons and planets," Salzmann said.

What's next for the researchers?

"There's still an open question about why we can't achieve full order in ice XV," Salzmann said. "We've already started new experimental work to explore how the properties of ice change within nanoconfinements and the presence of chemical species - because we're interested in understanding the complex behavior of ice on comets and within our atmosphere."

Research paper: "Detailed crystallographic analysis of the ice VI to ice XV hydrogen ordering phase transition,"


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
UNIST engineers thermoelectric material in paintable liquid form
Ulsan, South Korea (SPX) Dec 12, 2016
A new study, led by Professor Jae Sung Son of Materials Science and Engineering at UNIST has succeeded in developing a new technique that can be used to turn industrial waste heat into electricity for vehicles and other applications. In their study, the team presented a new type of high-performance thermoelectric (TE) materials that possess liquid-like properties. These newly developed mat ... read more


TECH SPACE
Raytheon to produce additional Air and Missile Defense Radar equipment

U.S. State Dept. approves Sea Giraffe 3D radars for the Philippines

Velodyne LiDAR makes breakthrough for tiny, low cost solid-state LiDAR sensors

Discovery to inspire more radiation-resistant metals

TECH SPACE
Japan to Launch First Military Communications Satellite on January 24

Intelsat General to provide satellite services to RiteNet for US Army network

NSA gives Type1 certification to Harris radio

Upgraded telecommunications network for Marines

TECH SPACE
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

TECH SPACE
Galileo, Europe's own satnav, to go online

Europe's own satnav, Galileo, due to go live

Lockheed Martin and USAF move ahead with GPS backup ground system upgrade

OGC requests public comment on its Coverage Implementation Schema

TECH SPACE
Germany receives first tactical A400M transport from Airbus

US military grounds Osprey planes in Japan after crash

Final sweep for MH370 sea search

Boeing delivers digital flight deck upgrades to NATO fleet

TECH SPACE
Stamping technique creates tiny circuits with electronic ink

Electron highway inside crystal

Further improvement of qubit lifetime for quantum computers

3-D solutions to energy savings in silicon power transistors

TECH SPACE
Critical zone, critical research at the weathering zone

Eye-Popping View of CO2, Critical Step for Carbon-Cycle Science

Revolutions in understanding the ionosphere, Earth's interface to space

Researchers dial in to 'thermostat' in Earth's upper atmosphere

TECH SPACE
Mosul battle leaving legacy of environmental damage

Beijing issues red alert for severe air pollution

Researchers create new way to trap dangerous gases

Tehran traffic 'unbearable', says police chief









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.