Space Industry and Business News  
TIME AND SPACE
"Ultramassive" Black Holes Discovered in Far-Off Galaxies
by Staff Writers
Montreal, Canada (SPX) Feb 21, 2018

illustration only

Thanks to data collected by NASA's Chandra X-ray telescope on galaxies up to 3.5 billion light-years away from Earth, an international team of astrophysicists was able to detect what is likely to be the most massive black holes ever discovered in the universe. The team's calculations showed that these "ultramassive" black holes are growing faster than the stars in their respective galaxies.

In their search for black holes, the two lead authors of the article published in Monthly Notices of the Royal Astronomical Society - Julie Hlavacek-Larrondo, professor in the Department of Physics at Universite de Montreal, and Mar Mezcua, postdoctoral fellow at the Institute of Space Sciences in Spain - studied 72 galaxies located at the centre of the universe's brightest and most massive galaxy clusters.

"A black hole is an invisible celestial object whose gravitational pull is so strong that neither matter nor light can escape it - it swallows everything in its path like a bottomless vortex," explained Professor Hlavacek-Larrondo, who also holds the Canada Research Chair in Observational Astrophysics of Black Holes.

"A black hole is most often created when a massive star dies and collapses on itself. The most fascinating thing about black holes is how they distort time around them. According to Einstein's theory of relativity, time flows more slowly in strong gravitational fields, like those of these gargantuan celestial objects."

The team of astronomers calculated the masses of black holes detected in these galaxy clusters by analyzing their radio wave and X-ray emissions. The results showed that the masses of ultramassive black holes are roughly 10 times greater than those originally projected calculated using a different method which assumes that black holes grow in tandem with their galaxies.

Furthermore, almost half of the sample's black holes are estimated to be at least 10 billion times more massive than our Sun. This puts them in a class of extreme heavyweights that certain astronomers call "ultramassive black holes."

"We have discovered black holes that are far larger and way more massive than anticipated," Mezcua pointed out. "Are they so big because they had a head start or because certain ideal conditions allowed them to grow more rapidly over billions of years? For the moment, there is no way for us to know."

"We do know that black holes are extraordinary phenomena," Hlavacek-Larrondo added, "so it's no surprise that the most extreme specimens defy the rules that we have established up until now."

The Destructive Force of Ultramassive Black Holes
Galaxies are not necessarily safe from these celestial behemoths lurking at their centres. The higher a black hole's mass, the greater its power. It sucks in all surrounding matter, like stars, then flings some of it back out in energized jets powerful enough to destroy much of its host galaxy. "It would be like a mini, galaxy-sized Big Bang," said Hlavacek-Larrondo.

"But there's no need to worry about our own galaxy," she continued. "Sagittarius A*, the Milky Way's supermassive black hole, is a bit boring. It's not very active, much like a dormant volcano. It sucks up little matter and probably wouldn't be able to produce destructive high-energy jets."

Why Study Black Holes Billions of Light-Years Away?
Professor Hlavacek-Larrondo focuses her work on black holes in distant galaxy clusters to show that such objects have been significantly impacting their galactic neighbourhoods and the entire universe for billions of years.

"They are the most powerful objects in the universe, and they are anything but quiet," she said. "Galaxies are the building blocks of our universe, and to understand their formation and evolution, we must first understand these black holes."

Research Report: M. Mezcua, J. Hlavacek-Larrondo, J. R. Lucey, M. T. Hogan, A. C. Edge and B. R. McNamara, "The Most Massive Black Holes on the Fundamental Plane of Black Hole Accretion," 2018 Feb. 11, Monthly Notices of the Royal Astronomical Society https://arxiv.org/abs/1710.10268


Related Links
Universite de Montreal
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Rotating dusty gaseous donut around an active supermassive black hole
Tokyo, Japan (SPX) Feb 15, 2018
Almost all galaxies hold concealed monstrous black holes in their centers. Researchers have known for a long time that the more massive the galaxy is, the more massive the central black hole is. This sounds reasonable at first, but host galaxies are 10 billion times bigger than the central black holes; it should be difficult for two objects of such vastly different scales to directly affect each other. So how could such a relation develop? Aiming to solve this shadowy problem, a team of astronomer ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
A new way of generating ultra-short bursts of light

University Holds Tenth Annual Space Horizons Workshop

Tricking photons leads to first-of-its-kind laser breakthrough

UMass Amherst physicists speed up droplet-wrapping process

TIME AND SPACE
Astrophysicists Warn Us Against Opening Malicious E.T. Messages

Northrop Grumman awarded $429M contract for Polar payloads

Improve European defence with new commercial space capabilities

Military innovation demands state-of-the-art satellite connectivity for maritime applications

TIME AND SPACE
TIME AND SPACE
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

TIME AND SPACE
Air Force makes way for the B-21 Raider to replace B-1B, B-2 bombers

Israel to receive F-35 air vehicle deliveries

US fighter jet drops fuel tanks in Japan accident

ASES awarded $18.5M contract for T-1A trainers' avionics

TIME AND SPACE
Silicon qubits plus light add up to new quantum computing capability

Mass production of new class of semiconductors closer to reality

First 3-D imaging of excited quantum dots

Fingerprints of quantum entanglement

TIME AND SPACE
Tracking a typhoon's seismic footprint

Farewell to a Pioneering Pollution Sensor

Ball Aerospace Delivers Flight Cryocooler Early for NASA's Landsat Mission

ESA Cluster mission unveils the magnetosphere

TIME AND SPACE
Philippines resorts given two months to clean up 'cesspool' island

German government plays down 'free transport' plan

Environmental chemicals may boost body weight: study

Storm runoff present salmon with toxic one-two punch, study shows









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.