Subscribe free to our newsletters via your
. Space Industry and Business News .




NANO TECH
Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors
by Staff Writers
Baltimore MD (SPX) Feb 25, 2015


This illustration depicts a short row of vortices held in place between the edges of a nanowire developed by Johns Hopkins scientists. Image courtesy Nina Markovic and Tyler Morgan-Wall/JHU.

Superconductor materials are prized for their ability to carry an electric current without resistance, but this valuable trait can be crippled or lost when electrons swirl into tiny tornado-like formations called vortices. These disruptive mini-twisters often form in the presence of magnetic fields, such as those produced by electric motors.

To keep supercurrents flowing at top speed, Johns Hopkins scientists have figured out how to constrain troublesome vortices by trapping them within extremely short, ultra-thin nanowires. Their discovery was reported Feb. 18 in the journal Physical Review Letters.

"We have found a way to control individual vortices to improve the performance of superconducting wires," said Nina Markovic, an associate professor in the Department of Physics and Astronomy in the university's Krieger School of Arts and Sciences.

Many materials can become superconducting when cooled to a temperature of nearly 460 below zero F, which is achieved by using liquid helium.

The new method of maintaining resistance-free current within these superconductors is important because these materials play a key role in devices such MRI medical scanners, particle accelerators, photon detectors and the radio frequency filters used in cell phone systems.

In addition, superconductors are expected to become critical components in future quantum computers, which will be able to do more complex calculations than current machines.

Wider use of superconductors may hinge on stopping the nanoscopic mischief that electron vortices cause when they skitter from side to side across a conducting material, spoiling the zero-resistance current. The Johns Hopkins scientists say their nanowires keep this from happening.

Markovic, who supervised the development of these wires, said other researchers have tried to keep vortices from disrupting a supercurrent by "pinning" the twisters to impurities in the conducting material, which renders them unable to move.

"Edges can also pin the vortices, but it is more difficult to pin the vortices in the bulk middle area of the material, farther away from the edges," she said. "To overcome this problem, we made a superconducting sample that consists mostly of edges: a very narrow aluminum nanowire."

These nanowires, Markovic said, are flat strips about one-billionth as wide as a human hair and about 50 to 100 times longer than their width. Each nanowire forms a one-way highway that allows pairs of electrons to zip ahead at a supercurrent pace.

Vortices can form when a magnetic field is applied, but because of the material's ultra-thin design, "only one short vortex row can fit within the nanowires," Markovic said. "Because there is an edge on each side of them, the vortices are trapped in place and the supercurrent can just slip around them, maintaining the resistance-free speed."

The ability to control the exact number of vortices in the nanowire may produce additional benefits, physics experts say. Future computers or other devices may someday use vortices instead of electrical charges to transmit information, they say.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Johns Hopkins University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution
Washington DC (SPX) Feb 25, 2015
Newly developed tiny antennas, likened to spotlights on the nanoscale, offer the potential to measure food safety, identify pollutants in the air and even quickly diagnose and treat cancer, according to the Australian scientists who created them. The new antennas are cubic in shape. They do a better job than previous spherical ones at directing an ultra-narrow beam of light where it is nee ... read more


NANO TECH
Japan's NTT to buy German data centre operator: report

Moving molecule writes letters

New filter could advance terahertz data transmission

A simple way to make and reconfigure complex emulsions

NANO TECH
Navy satellite communications systems getting support services

Russia to Launch Two Military Satellites in February

Navy orders additional LCS mission modules

U.S. EA-18G Growlers getting new electronic warfare system

NANO TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Leaders share messages, priorities at AFA Symposium

Moog offers "SoftRide" for enhanced spacecraft protection during launch

Russian-Ukrainian Satan Rocket to Launch South Korean Satellite as Planned

NANO TECH
Tehran keeps tighter leash on strays with GPS collars

China, Russia strengthen satellite navigation cooperation

India Interested in Russia's Glonass Satellite Navigation System

Latest Galileo satellites reach launch site

NANO TECH
Britain adding Brimstone 2 missiles to Typhoon arsensal

Boeing and Raytheon bid for Saudi command-and-control deal

Sensors Detect Icing Conditions to Help Protect Airplanes

Slovakia seeking Black Hawk helos

NANO TECH
QR codes with advanced imaging and photon encryption protect computer chips

Radio chip for the 'Internet of things'

Smarter multicore chips

Penn researchers develop new technique for making molybdenum disulfide

NANO TECH
Via laser into the past of the oceans

Satellite gearing up to take EPIC pictures of Earth

NASA snaps picture of Eastern US in a record-breaking 'freezer'

ESA's Biomass satellite goes ahead

NANO TECH
Agricultural insecticides pose a global risk to surface water bodies

Fears over plastic-eating coral in Australia's Barrier Reef

Peruvian peasant takes on mining giant

Great Barrier Reef corals eat plastic




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.