Space Industry and Business News  
UK Scientists Sift Superfine Stardust

Residue-bearing crater from a Stardust Foil. Credit: JPL/Unis. of Leicester, Kent, Glasgow, Open University and Natural History Museum
by Staff Writers
Leicester UK (SPX) Apr 19, 2007
UK scientists are preparing to analyse miniscule impact craters collected by NASA's Stardust mission as it flew through interstellar dust streams. These craters contain the residues of the dust particles that are the seeds of our own Solar System.

A UK consortium of researchers from the University of Leicester, Natural History Museum, Kent University, Glasgow University and Open University have been studying the cometary samples which were delivered a few weeks after the samples were returned to Earth.

The interstellar dust particles are about ten nanometres across (one hundred thousandth of a millimetre) and they are even smaller than many of the particles that Stardust collected when it flew through the coma of Comet Wild 2.

In a presentation at the Royal Astronomical Society's National Astronomy Meeting in Preston on 18th April, Dr John Bridges from the University of Leicester will describe how techniques developed to analyse material from the comet's tail will be used to study the interstellar particles.

A focussed beam of electrically charged particles will be used to extract the residue of the dust from the craters. Once the material is no longer shielded by the crater walls, it can be examined using a transmission electron microscope.

"The interstellar dust particles collected by Stardust are so tiny that they pose huge analytical challenges," said Dr Bridges. "Having spent the time perfecting our techniques and analysing Comet Wild 2, we are very excited by the prospect of these samples.

"Our analysis of samples from the comet's tail revealed that its composition was more complex than we'd thought and indicated an unexpected mixing of refractory and volatile material in the early Solar System. The interstellar particles will take us one step farther back and allow us to look at the composition of the dust cloud from which the Solar System formed."

The Stardust mission spent 4 months collecting interstellar dust during its 2.88 million mile journey to Comet Wild-2 and back to Earth. The return capsule, containing the dust and samples from the comet's tail, landed in the desert in Utah in January 2006. Since then, samples have been distributed to selected researchers around the world.

Related Links
Stardust
Stellar Chemistry, The Universe And All Within It
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Stardust Responds On First Command From Earth
Pasadena CA (JPL) Feb 07, 2007
It has been nearly a year since Stardust successfully released the capsule that returned the Wild 2 dust particles to earth and sent its last signal before being placed in a hibernation state. That situation changed when the Spacecraft Team (SCT) recently radiated commands to have STARDUST resume communications in order to determine the spacecraft's health for a follow-on mission to the comet Tempel 1.







  • All Of Russia Will Have Internet And Phone Access
  • Wildblue High-Speed Internet Via Satellite Triples Capacity With New Satellite
  • Publish, Perish Attitudes Make Profs Balk At Online Publication
  • World Getting Ready To Change The Light Bulb

  • Russia Puts 16 Foreign Satellites Into Orbit
  • Indian Space Agency Set For First Commercial Launch Of Foreign Satellite
  • Russia To Launch Four US Satellites In May
  • PSLV-C8 To Be Launched On April 23

  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming

  • Raytheon To Supply Canada With Enhanced Position Location Reporting System Terminals
  • Intelsat To Test Internet Routing In Space For The US Military
  • Northrop Grumman And LockMart Team Up For Integrated Air And Missile Defense Battle Command
  • Harris Donates OS/COMET For Use In FalconSAT Program

  • Colombia Launches First Satellite
  • A New Generation Of Space Tethers
  • Rolls-Royce Selects Bristol University For Composites Research
  • Tests Demonstrate Functionality Of Next Generation Processor Router For TSAT

  • Townsend To Lead Ball Aerospace Exploration Systems In Huntsville
  • NASA Nobel Prize Recipient To Lead Chief Scientist Office
  • Kathryn Kynard Plays Key Role In Ares I Upper Stage Engine Development
  • William Shernit Joins Intelsat General As President and CEO

  • Scientists Meet To Review Envisat Results After Five Years Of Operations
  • US Uses Landsat Satellite Data To Fight Hunger And Poverty
  • NOAA And NASA Restore Climate Sensor To Upcoming NPP Satellite
  • High-Resolution Images Herald New Era In Earth Sciences

  • Northrop Grumman Team OCX Bids On The GPS Next Generation Control Segment Contract
  • China Launches Compass Navigation Satellite
  • GPS Significantly Impacted By Powerful Solar Radio Burst
  • Russia To Expand Glonass Satellite Group By Year End

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement