![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Cincinnati OH (SPX) Apr 26, 2007 Carbon nanotubes (CNTs) are of great interest because of their outstanding mechanical, electrical and optical properties. Intense research has been undertaken to synthesize long aligned CNTs because of their potential applications in nanomedicine, aerospace, electronics and many other areas. Especially important is that long CNT arrays can be spun into fibers that are - in theory - significantly stronger and lighter than any existing fibers and are electrically conductive. Nanotube fibers are expected to engender revolutionary advances in the development of lightweight, high-strength materials and could potentially replace copper wire. Years of effort by UC researchers Vesselin Shanov and Mark Schulz, co-directors of the University of Cincinnati Smart Materials Nanotechnology Laboratory, along with Yun YeoHeung and students, led to the invention of the method for growing long nanotube arrays. Employing this invention, the UC researchers (in conjunction with First Nano, a division of CVD Equipment Corporation of Ronkonkoma, New York) have produced extremely long CNT arrays (18 mm) on their EasyTube System using a Chemical Vapor Deposition (CVD) process. Moreover, in a re-growth experiment on a separate substrate, they produced an 11-mm long CNT array. This array was then successfully peeled completely off the substrate. Without additional processing, the same substrate was reused for a successive growth that yielded an 8-mm-long CNT array. The photographs in figures "c" and "d," above, are scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) images of the multi-wall CNT arrays. Shanov notes that their research has had four major milestones this year already. "First, we were able to grow the arrays up to 18 mm," he says, ticking off the achievements. "Second, we produced a uniform carpet of 12-mm carbon nanotube arrays on a 4-inch wafer, which moves the invention into the field of scaled-up manufacturing for industrial application. Third, we filed a patent application on the inventions at the US Patent and Trademark Office and, fourth, we were invited to participate in a very prestigious workshop (invitation-only) organized by NASA and Rice University, where we presented our latest results. The workshop focused on "Single Wall Carbon Nanotube Nucleation and Growth Mechanisms." This event was attended by the best scientists in the world working on synthesis carbon nanotubes, from Japan, China, Europe and the United States. Our presentation was accepted very well and confirmed that with the current record of 18-mm-long carbon nanotube arrays, and also with the big area growth on 4-inch wafers, we are leading in manufacturing extremely long CNT arrays."
The Fine Print and Nano Details The UC substrate for growing CNT arrays is a multilayered structure with a sophisticated design in which a metal based catalyst alloy is formed on top of an oxidized silicon wafer. Its manufacturing requires a "clean room" environment and thin-film deposition techniques that can be scaled up to produce commercial quantities. CNT synthesis is carried out in a hydrogen/hydrocarbon/water/argon environment at 750 degrees Celsius. The achievement of growing centimeter-long nanotube arrays provides hope that continuous growth of CNTs in the meter length range is possible. Leonard Rosenbaum, president and CEO of CVD Equipment Corporation, is looking forward to continuing the partnership with UC to bring this technology from the laboratory into full-scale production. UC is also partnering with another company to develop production of long CNT arrays that can be spun into fibers. This research was supported by National Science Foundation (NSF) grant CMS-051-0823 (program directors Shih-Chi Liu and K. Jimmy Hsia) and the Office of Naval Research (program director Ignacio Perez) through North Carolina A and T SU (program directors Jag Sankar and Sergey Yarmolenko). CVD Equipment Corporation engineers developed and built the EasyTube System used by First Nano to grow the long CNT arrays. Related Links Powering The World in the 21st Century at Energy-Daily.com Our Polluted World and Cleaning It Up China News From SinoDaily.com Global Trade News The Economy All About Solar Energy at SolarDaily.com Civil Nuclear Energy Science, Technology and News Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
![]() ![]() Using what is thought to be the world's smallest pipette, two researchers at the U.S. Department of Energy's Brookhaven National Laboratory have shown that tiny droplets of liquid metal freeze much differently than their larger counterparts. This study, focused on droplets just a billionth of a trillionth of a liter in size, is published in the April 15, 2007, online edition of Nature Materials. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement |