Space Industry and Business News
CHIP TECH
Two qudits fully entangled
Vacuum chamber with a microfabricated surface trap.
Two qudits fully entangled
by Staff Writers
Innsbruck, Austria (SPX) Apr 24, 2023

In the world of computing, we typically think of information as being stored as ones and zeros - also known as binary encoding. However, in our daily life we use ten digits to represent all possible numbers. In binary the number 9 is written as 1001 for example, requiring three additional digits to represent the same thing.

The quantum computers of today grew out of this binary paradigm, but in fact the physical systems that encode their quantum bits (qubit) often have the potential to also encode quantum digits (qudits), as recently demonstrated by a team led by Martin Ringbauer at the Department of Experimental Physics at the University of Innsbruck. According to experimental physicist Pavel Hrmo at ETH Zurich: "The challenge for qudit-based quantum computers has been to efficiently create entanglement between the high-dimensional information carriers."

In a study published in the journal Nature Communications the team at the University of Innsbruck now reports, how two qudits can be fully entangled with each other with unprecedented performance, paving the way for more efficient and powerful quantum computers.

Thinking like a quantum computer
The example of the number 9 shows that, while humans are able calculate 9 x 9 = 81 in one single step, a classical computer (or calculator) has to take 1001 x 1001 and perform many steps of binary multiplication behind the scenes before it is able to display 81 on the screen. Classically, we can afford to do this, but in the quantum world where computations are inherently sensitive to noise and external disturbances, we need to reduce the number of operations required to make the most of available quantum computers.

Crucial to any calculation on a quantum computer is quantum entanglement. Entanglement is one of the unique quantum features that underpin the potential for quantum to greatly outperform classical computers in certain tasks. Yet, exploiting this potential requires the generation of robust and accurate higher-dimensional entanglement.

The natural language of quantum systems
The researchers at the University of Innsbruck were now able to fully entangle two qudits, each encoded in up to 5 states of individual Calcium ions. This gives both theoretical and experimental physicists a new tool to move beyond binary information processing, which could lead to faster and more robust quantum computers.

Martin Ringbauer explains: "Quantum systems have many available states waiting to be used for quantum computing, rather than limiting them to work with qubits." Many of today's most challenging problems, in fields as diverse as chemistry, physics or optimisation, can benefit from this more natural language of quantum computing.

The research was financially supported by the Austrian Science Fund FWF, the Austrian Research Promotion Agency FFG, the European Research Council ERC, the European Union and the Federation of Austrian Industries Tyrol, among others.

Research Report:Native qudit entanglement in a trapped ion quantum processor

Related Links
University of Innsbruck
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Quantum communication for dummies
Paris, France (SPX) Apr 24, 2023
Quantum computers will need to be interconnected for maximum performance, and will make current encryption technology vulnerable. But what exactly is quantum communication, and how is it useful? Here is a quick guide to demystify the quantum world. Sensitive information is now frequently encrypted and delivered via the internet, through fibre-optic cables, telecommunication satellites and other channels along with the digital "crypto keys" required to cypher and decypher the data. Both the data an ... read more

CHIP TECH
Paving the way for truly intelligent materials

Researchers 3D print a miniature vacuum pump

Researchers capture first atomic-scale images depicting early stages of particle accelerator film formation

Outstanding performance of organic solar cell using tin oxide

CHIP TECH
Hughes introduces Smart Network Edge Software for critical DoD communications

42-satellite constellation will provide resilient, secure comms for US troops globally

Building a Secure Resilient Satellite Infrastructure for Europe

Raytheon and SpiderOak collaborate to secure satcoms in crowded LEO

CHIP TECH
CHIP TECH
Telit Cinterion adds Dual-Band GNSS Positioning to AIROHA AG3335 Chipsets

Monogoto teams with Skylo and SODAQ to deliver NB-IoT satellite asset tracking

Quectel announces CC200A-LB satellite module for IoT

Topcon further expands MC-X Platform with all-new GNSS Option

CHIP TECH
Helicopter flight paths to reduced emissions

EU set to put greener aviation fuel in planes

Air Force pilots reach new program milestones in electric vertical takeoff and landing aircraft

Everything electric with DLR at AERO 2023

CHIP TECH
Textile treatment sets a futuristic trend for new electronic applications

Two qudits fully entangled

Ultra-miniaturized non-classical light sources for quantum devices

From sheets to stacks, new nanostructures promise leap for advanced electronics

CHIP TECH
Transforming nature conservation with the power of satellite imagery

Remote sensing of urban green space published

Trailblazing Aeolus mission winding down

Astraea launches new satellite tasking capabilities with major satellite imagery providers

CHIP TECH
Arctic ice algae heavily contaminated with microplastics

Every breath a struggle, as air pollution harms health in Thailand

Climate activists heap up 650,000 cigarette butts in Portugal

Guinea launches probe after 50 fishermen suffer skin problems

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.