Space Industry and Business News  
TECH SPACE
'Twist and shine': Development of a new photoluminescent sensor material
by Staff Writers
Onna, Japan (SPX) Apr 20, 2017


The mechanophore molecule is inserted within the short, tightly packed units of the polyurethane polymer. Bottom: when a physical force (in this case stretching indicated by the symbol F) is applied onto the polymer while under an excitation source (here a UV light), the mechanophore will increase the intensity of the emitted light (here shown as Force). For a larger version of this image please go here. Watch a video on the research here.

Stress sensors are important tools when it comes to evaluating the robustness of a material facing strong mechanical forces. OIST researchers have just published in Advanced Materials an article reporting a new kind of sensor molecules that brightens up when the material they are incorporated into comes under heavy mechanical stress.

Such light-based sensing molecules, also called photoluminescent mechanophores, are not new, but currently available applications are single-use only. They would typically involve a strong force - compressing, twisting or stretching for example - breaking a specific chemical bond between two atoms or irreversibly pulling apart two molecular patterns in the sensing molecule, changing the wavelength - and thus the color - of the light emitted by the mechanophore.

Once these molecules have radically changed their structure in response to this force, it is extremely difficult to return to the initial situation. While these mechanophores are useful to understand the mechanical properties of an item or a material, they do not suit well for repeated exposure to mechanical stress.

To overcome this issue, Dr. Georgy Filonenko and Prof. Julia Khusnutdinova from the Coordination Chemistry and Catalysis Unit designed a photoluminescent mechanophore that retains its properties over time and under repeated incidences of mechanical stress. The researchers incorporated the stress-sensing molecule into a common polymer material called polyurethane, widely used for everyday items from mattresses and cushions to inflatable boats, car interiors, woodworking glue and even spandex.

The scientists then stretched the resulting material with increasing force, triggering a correspondingly brighter glow under an ultraviolet light. The reaction happens within hundreds of milliseconds, resulting in a up to two-fold increase in luminescence intensity. When the mechanical traction stops, the polymer material and the mechanophore reverse to their initial position, decreasing the light readout. This is critical as it allows for repeated applications of mechanical force.

This new mechanophore is a photoluminescent compound from recently published work by Dr. Filonenko and Prof. Khusnutdinova. Despite its very simple structure the compound is extremely responsive to the physical environment which has a direct impact on the color visible with the naked eye under a UV light. These molecules were incorporated directly within the repeated patterns of the polymer material.

The high mobility of the mechanophore molecules in the polymer was found to be the key to the sensor performance. As mechanophores moved rapidly in the relaxed polymer sample, the brightness of emission was low due to these molecular motions preventing the mechanophore from emitting light. However, subjecting the material to mechanical force effectively slowed down the polymer chain motions, enabling the mechanophore to emit light more efficiently.

"Our material shows how a macroscopic force, as basic as stretching a flexible strand of material, can efficiently trigger microscopic changes all the way down to isolated molecules," commented Dr. Filonenko.

Research paper

TECH SPACE
Computers create recipe for two new magnetic materials
Durham NC (SPX) Apr 20, 2017
Material scientists have predicted and built two new magnetic materials, atom-by-atom, using high-throughput computational models. The success marks a new era for the large-scale design of new magnetic materials at unprecedented speed. Although magnets abound in everyday life, they are actually rarities - only about five percent of known inorganic compounds show even a hint of magnetism. A ... read more

Related Links
Okinawa Institute of Science and Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
'Twist and shine': Development of a new photoluminescent sensor material

Leybold simplifies repairs and maintenance through Augmented Reality

Lockheed Martin secures $1.6 billion contract for counterfire radars

Tiny Probes Hold Big Promise for Future NASA Missions

TECH SPACE
World's Most Powerful Emulator of Radio-Signal Traffic Opens for Business

Thales supplying Denmark with communications system

US Strategic Command, Norway sign agreement to share space services, data

Pentagon urges Russia not to hang up military hotline

TECH SPACE
TECH SPACE
Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

Northrop Grumman, Honeywell receive EGI-M contracts

TECH SPACE
Pressurized Perlan glider reaches new high altitude on journey to edge of space

Boeing pulls out of 'unfair' Belgian F-16 fighter replacement bid

Kazakhstan buys two more Airbus C295 aircraft

Singapore's air force upgrading Apache warfare systems

TECH SPACE
Graphene 'copy machine' may produce cheap semiconductor wafers

Molecular libraries for organic light-emitting diodes

New quantum liquid crystals may play role in future of computers

Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

TECH SPACE
When Swarm met Steve

'Detergent' Molecules May Drive Recent Methane Changes

Banned industrial solvent sheds new light on methane mystery

Raytheon speeds delivery and secures satellite weather data

TECH SPACE
UK could face legal battle over air pollution delay

Sri Lanka bans anti-garbage protests after dump disaster

ESA helps faster cleaner shipping

The bus mafia controlling Nepal's smog-choked capital









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.