Space Industry and Business News  
ENERGY TECH
Turning abandoned mines into batteries
by Staff Writers
Vienna, Austria (SPX) Jan 18, 2023

Underground Gravity Energy Storage system: a schematic of different system sections

A novel technique called Underground Gravity Energy Storage turns decommissioned mines into long-term energy storage solutions, thereby supporting the sustainable energy transition.

Renewable energy sources are central to the energy transition toward a more sustainable future. However, as sources like sunshine and wind are inherently variable and inconsistent, finding ways to store energy in an accessible and efficient way is crucial. While there are many effective solutions for daily energy storage, the most common being batteries, a cost-effective long-term solution is still lacking.

In a new IIASA-led study, an international team of researchers developed a novel way to store energy by transporting sand into abandoned underground mines. The new technique called Underground Gravity Energy Storage (UGES) proposes an effective long-term energy storage solution while also making use of now-defunct mining sites, which likely number in the millions globally.

UGES generates electricity when the price is high by lowering sand into an underground mine and converting the potential energy of the sand into electricity via regenerative braking and then lifting the sand from the mine to an upper reservoir using electric motors to store energy when electricity is cheap. The main components of UGES are the shaft, motor/generator, upper and lower storage sites, and mining equipment. The deeper and broader the mineshaft, the more power can be extracted from the plant, and the larger the mine, the higher the plant's energy storage capacity.

"When a mine closes, it lays off thousands of workers. This devastates communities that rely only on the mine for their economic output. UGES would create a few vacancies as the mine would provide energy storage services after it stops operations," says Julian Hunt, a researcher in the IIASA Energy, Climate, and Environment Program and the lead author of the study. "Mines already have the basic infrastructure and are connected to the power grid, which significantly reduces the cost and facilitates the implementation of UGES plants."

Other energy storage methods, like batteries, lose energy via self-discharge over long periods. The energy storage medium of UGES is sand, meaning that there is no energy lost to self-discharge, enabling ultra-long time energy storage ranging from weeks to several years.

The investment costs of UGES are about 1 to 10 USD/kWh and power capacity costs of 2.000 USD/kW. The technology is estimated to have a global potential of 7 to 70 TWh, with most of this potential concentrated in China, India, Russia, and the USA.

"To decarbonize the economy, we need to rethink the energy system based on innovative solutions using existing resources. Turning abandoned mines into energy storage is one example of many solutions that exist around us, and we only need to change the way we deploy them," concludes Behnam Zakeri, study coauthor and a researcher in the IIASA Energy, Climate, and Environment Program.

Research Report:Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage


Related Links
International Institute for Applied Systems Analysis
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
New strategy suggested for ultra-long cycle Li-ion battery
Hefei, China (SPX) Jan 09, 2023
In recent years, lithium ion batteries have been widely used in many fields. Compared with traditional lithium ion battery cathode materials, more lithium ions in lithium rich manganese based cathode materials of unit mass participate in energy storage. However, in the process of battery reaction, stress accumulation and lattice oxygen loss will cause some microcracks in lithium rich manganese based materials. The migration of transition metal ions will lead to phase transition of materials and ot ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Unibap receives order from Thales Alenia Space

Seoul launches ambitious metaverse platform for city services, tourism

Riot at Chinese-funded nickel plant in Indonesia kills two

Scientists use laser to guide lightning bolt for first time

ENERGY TECH
OneWeb confirms successful deployment of 40 satellites

Keysight, Qualcomm accelerate 5G non-terrestrial network communication services for remote areas

Viasat completes sale of Link 16 Tactical Data Links Business to L3Harris Technologies

Viasat awarded 5 year $325M IDIQ contract by US Special Operations Command

ENERGY TECH
ENERGY TECH
Quectel expands its 5G and GNSS Combo Antennas Portfolio

Airbus achieves key milestone on EGNOS European satellite-based navigation augmentation system

Kleos partners with UP42

Navigating the sea from space with innovative technologies

ENERGY TECH
Staff shortages dent Hong Kong air hub reboot hopes

DARPA selects Aurora Flight Sciences for Phase 2 of Active Flow Control X-Plane

Could the humble dragonfly help pilots during flight?

NASA issues award for greener, more fuel-efficient airliner of future

ENERGY TECH
MIT engineers grow "perfect" atom-thin materials on industrial silicon wafers

New spin control method brings billion-qubit quantum chips closer

Data reveal a surprising preference in particle spin alignment

Two technical breakthroughs make high-quality 2D materials possible

ENERGY TECH
Dairy giant Danone vows to slash planet-warming methane

Planet Labs completes acquisition of Salo Sciences

Terran Orbital's GEOStare SV2 completes commercial imaging contract for Lockheed Martin

U.N. panel says ozone layer will recover in about 40 years

ENERGY TECH
Out of Nile, into tile: Young Egyptians battle plastic plague

Raft of single-use plastic items to be banned in England: govt

Sunlight pulps the plastic soup

Gas from faulty heaters kills 17 in Algeria amid cold snap









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.