Space Industry and Business News  
STELLAR CHEMISTRY
Tune your radio: Galaxies sing when forming stars
by Staff Writers
Santa Cruz de Tenerife, Spain (SPX) Feb 22, 2017


The compilation shows composite infrared images of these galaxies created from Spitzer (SINGS) and Herschel (KINGFISH) observations. Image courtesy Maud Galametz. For a larger version of this image please go here.

Almost all the light we see in the universe comes from stars which form inside dense clouds of gas in the interstellar medium. The rate at which they form (referred to as the star formation rate, or SFR) depends on the reserves of gas in the galaxies and the physical conditions in the interstellar medium, which vary as the stars themselves evolve. Measuring the star formation rate is hence key to understand the formation and evolution of galaxies.

Until now, a variety of observations at different wavelengths have been performed to calculate the SFR, each with its advantages and disadvantages. As the most commonly used SFR tracers, the visible and the ultraviolet emission can be partly absorbed by interstellar dust.

This has motivated the use of hybrid tracers, which combine two or more different emissions, including the infrared, which can help to correct this dust absorption. However, the use of these tracers is often uncertain because other sources or mechanisms which are not related to the formation of massive stars can intervene and lead to confusion.

Now, an international research team led by the IAC astrophysicist Fatemeh Tabatabaei has made a detailed analysis of the spectral energy distribution of a sample of galaxies, and has been able to measure, for the first time, the energy they emit within the frequency range of 1-10 Gigahertz which can be used to know their star formation rates.

"We have used" explains this researcher "the radio emission because, in previous studies, a tight correlation was detected between the radio and the infrared emission, covering a range of more than four orders of magnitude". In order to explain this correlation, more detailed studies were needed to understand the energy sources and processes which produce the radio emission observed in the galaxies.

"We decided within the research group to make studies of galaxies from the KINGFISH sample (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel) at a series of radio frequencies", recalls Eva Schinnerer from the Max-Planck-Institut fur Astronomie (MPIA) in Heidelberg, Germany. The final sample consists of 52 galaxies with very diverse properties.

"As a single dish, the 100-m Effelsberg telescope with its high sensitivity is the ideal instrument to receive reliable radio fluxes of weak extended objects like galaxies", explains Marita Krause from the Max-Planck-Institut fur Radioastronomie (MPIfR) in Bonn, Germany, who was in charge of the radio observations of those galaxies with the Effelsberg radio telescope. "We named it the KINGFISHER project, meaning KINGFISH galaxies Emitting in Radio."

The results of this project, published this week in The Astrophysical Journal, show that the 1-10 Gigahertz radio emission used is an ideal star formation tracer for several reasons.

Firstly, the interstellar dust does not attenuate or absorb radiation at these frequencies; secondly, it is emitted by massive stars during several phases of their formation, from young stellar objects to HII regions (zones of ionized gas) and supernova remnants, and finally, there is no need to combine it with any other tracer. For these reasons, measurements in the chosen range are a more rigorous way to estimate the formation rate of massive stars than the tracers traditionally used.

This study also clarifies the nature of the feedback processes occurring due to star formation activity, which are key in evolution of galaxies.

"By differentiating the origins of the radio continuum, we could infer that the cosmic ray electrons (a component of the interstellar medium) are younger and more energetic in galaxies with higher star formation rates, which can cause powerful winds and outflows and have important consequences in regulation of star formation", explains Fatemeh Tabatabaei.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Instituto de Astrofisica de Canarias
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Experiments call origin of Earth's iron into question
Austin TX (SPX) Feb 22, 2017
New research from The University of Texas at Austin reveals that the Earth's unique iron composition isn't linked to the formation of the planet's core, calling into question a prevailing theory about the events that shaped our planet during its earliest years. The research, published in Nature Communications on Feb. 20, opens the door for other competing theories about why the Earth, rela ... read more


STELLAR CHEMISTRY
Scientists predicted new high-energy compounds

ESA's six-legged Suntracker flying on a Dragon

Sky and Space signs agreement with US Department of Defence

Curtiss-Wright offers COTS Module for measuring microgravity acceleration

STELLAR CHEMISTRY
IAI secures $30 million in signals intelligence contracts

Terahertz wireless could make spaceborne satellite links as fast as fiber-optic links

Airbus provides satcom for EU security missions in Mali, Niger and Somalia

Engie, Airbus tapped to support French defense networks

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Police in China's restive Xinjiang to track cars by GPS

GLONASS station in India to expedite 'space centric' warfare command

Australia and Lockheed field 2nd-Gen sat-based augmentation system

UK may lose access to EU Galileo GPS system after Brexit

STELLAR CHEMISTRY
Russian Helicopters in talks with India for 200 aircraft

NATO countries to join multinational aerial tanker initiative

India, Russia close in on chopper deal: report

Czech Republic, Switzerland eye A400M lease from Germany

STELLAR CHEMISTRY
Chip could make voice control ubiquitous in electronics

Artificial synapse for neural networks

Combining the ultra-fast with the ultra-small

Mail armor inspires physicists

STELLAR CHEMISTRY
Airbus to develop payload for first Franco-German Earth observation satellite

In Atmospheric River Storms, Wind Is a Risk, Too

NASA to launch sequel to successful Lightning Study Mission

Sentinel-2 teams prepare for space

STELLAR CHEMISTRY
Study finds 6,600 fracking spills in four states over 10 years

Underwater seagrass beds dial back polluted seawater

Tiny plastic particles from clothing, tyres clogging oceans: report

Polluted Indian lake catches fire









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.