Space Industry and Business News  
TECH SPACE
Transmitting energy in soft materials
by Staff Writers
Boston MA (SPX) Aug 10, 2016


Bistable beams -- structures stable in two distinct state -- store and release elastic energy along the path of a wave. Image courtesy Bertoldi Lab/Harvard SEAS. For a larger version of this image please go here.

Soft materials are great at damping energy - that's why rubber tires are so good at absorbing the shock of bumps and potholes. But if researchers are going to build autonomous soft systems, like soft robots, they'll need a way to transmit energy through soft materials.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with colleagues at the California Institute of Technology, have developed a way to send mechanical signals through soft materials.

The research is described in the Proceedings of the National Academy of Sciences.

"Soft autonomous systems have received a lot of attention because, just like the human body or other biological systems, they can be adaptive and perform delicate movements. However, the highly dissipative nature of soft materials limits or altogether prevents certain functions," said Jordan Raney, postdoctoral fellow at SEAS and first author of the paper.

"By storing energy in the architecture itself we can make up for the energy losses due to dissipation, allowing the propagation of mechanical signals across long distances."

The system uses the centuries-old concept of bistable beams - structures stable in two distinct state - to store and release elastic energy along the path of a wave. The system consists of a chain of bistable elastomeric beams connected by elastomeric linear springs.

When those beams are deformed, they snap and store energy in the form of elastic deformation. As the signal moves down the elastomer, it snaps the beams back into place, releasing the stored energy and sending the signal downstream like a line of dominos. The bistable system prevents the signal from dissipating downstream.

"This design solves two fundamental problems in transmitting information through materials," said Katia Bertoldi, the John L. Loeb Associate Professor of the Natural Sciences at SEAS and senior author of the paper.

"It not only overcomes dissipation, but it also eliminates dispersive effects, so that the signal propagates without distortion. As such, we maintain signal strength and clarity from start to end."

The beam geometry requires precise fabrication techniques. If the angle or thickness of one beam is off by one degree or millimeter, the whole system fails.

The team used advanced 3D printing techniques to fabricate the system.

"We're developing new materials and printing methods that enable the fabrication of soft materials with programmable bistable elements," said Jennifer A. Lewis, the Hansjorg Wyss Professor of Biologically Inspired Engineering and coauthor of the paper.

The team designed and printed a soft logic gate using this system. The gate, which looks like a tuning fork, can be controlled to act as either as an AND or as an OR gate.

"It's amazing what you can do using simple beams - a building block that's been around hundreds of years," said Bertoldi. "You can do new stuff with a very old, well studied and very simple component."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard School of Engineering and Applied Sciences
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
New metamaterials can change properties with a flick of a light-switch
Washington DC (SPX) Aug 04, 2016
Invisibility cloaks have less to do with magic than with metamaterials. These human-engineered materials have properties that don't occur in nature, allowing them to bend and manipulate light in weird ways. For example, some of these materials can channel light around an object so that it appears invisible at a certain wavelength. These materials are also useful in applications such as sma ... read more


TECH SPACE
Hot 'new' material found to exist in nature

Flexible building blocks of the future

A mini-antenna for the data processing of tomorrow

New metamaterials can change properties with a flick of a light-switch

TECH SPACE
L-3 Communications gets $216 million U.S. Army aircraft contract modification

Raytheon developing next-gen airborne communications

Rethinking the Space Environment in a Globalized World

What Industry Can Teach the DoD About Innovation

TECH SPACE
Russia Postpones Launch of Proton Rocket With US Satellite Until October 10

The rise of commercial spaceports

India earned Rs 230 crore through satellite launch services in FY16

US Plan to Diversify Expendable Space Launch Vehicles Being Questioned

TECH SPACE
GPS jamming: Keeping ships on the 'strait' and narrow

China's satnav industry grows 29 pct in 2015

Twinkle, Twinkle, GPS

Like humans, lowly cockroach uses a GPS to get around, scientists find

TECH SPACE
Amazon 'Prime' plane takes flight

MH370 plunged into ocean at high speed: report

Malaysia says MH370 pilot flew Indian Ocean route on simulator

China's Hainan Airlines buys stake in Brazil's Azul

TECH SPACE
Next generation of memory chips could be 1,000 times faster

Integration of novel materials with silicon chips makes new 'smart' devices possible

Russian physicists discover a new approach for building quantum computers

Hybrid Computers Set to Shine

TECH SPACE
Study provides a new method to measure the energy of a lightning strike

Migration, hunting patterns of Caspian seals tracked by satellite

Collecting Fingerprints in the Sky

ISRO to use radar imaging satellite to locate missing IAF plane

TECH SPACE
Philippines' Duterte turns screws on mining

In Chesapeake Bay, clean air and water are a package deal

China firm fined for pollution in landmark case

Olympic sailors to get garbage-free waters - maybe









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.