Space Industry and Business News  
TIME AND SPACE
Traffic jam in empty space
by Staff Writers
Konstanz, Germany (SPX) Jan 20, 2017


Schematic sketch of the spatio-temporal deviations from the level of bare vacuum fluctuations of the electric field which are generated by deforming space-time and sampled in the time domain. The color-coded hypersurface combines a longitudinal time trace (red line) with the transverse mode function. Image courtesy University of Konstanz.

With these results, the researchers from the field of ultrafast phenomena and photonics build on their earlier findings, published in October 2015 in the scientific journal Science, where they have demonstrated direct detection of signals from pure nothingness.

This essential scientific progress might make it possible to solve problems that physicists have grappled with for a long time, ranging from a deeper understanding of the quantum nature of radiation to research on attractive material properties such as high-temperature superconductivity. The new results are published on 19 January 2017 in the current online issue of the scientific journal Nature: DOI: 10.1038/nature21024.

A world-leading optical measurement technique, developed by Alfred Leitenstorfer's team, made this fundamental insight possible. A special laser system generates ultrashort light pulses that last only a few femtoseconds and are thus shorter than half a cycle of light in the investigated spectral range. One femtosecond corresponds to the millionth of a billionth of a second.

The extreme sensitivity of the method enables detection of electromagnetic fluctuations even in the absence of intensity, that is, in complete darkness. Theoretically, the existence of these "vacuum fluctuations" follows from Heisenberg's Uncertainty Principle. Alfred Leitenstorfer and his team succeeded in directly observing these fluctuations for the first time and in the mid-infrared frequency range, where even conventional approaches to quantum physics have not worked previously.

The conceptual novelty of the experiments is that instead of the frequency-domain techniques used so far, the physicists from Konstanz accessed quantum statistics of light directly in the time domain. At a chosen point in time, electric field amplitudes are directly measured instead of analysing light in a narrow frequency band.

Studying different points in time results in characteristic noise patterns that allow for detailed conclusions about the temporal quantum state of light. As the laser pulse propagates together with the quantum field under study, the Konstanz physicists can, so to speak, bring time to a stop. Ultimately, space and time, that is "space-time", behave absolutely equivalently in these experiments - an indication of the inherently relativistic nature of electromagnetic radiation.

As the new measurement technique neither has to absorb the photons to be measured nor amplify them, it is possible to directly detect the electromagnetic background noise of the vacuum and thus also the controlled deviations from this ground state, created by the researchers. "We can analyse quantum states without changing them in the first approximation", says Alfred Leitenstorfer. The high stability of the Konstanz technology is an important factor for the quantum measurements, as the background noise of their ultrashort laser pulses is extremely low.

By manipulating the vacuum with strongly focused femtosecond pulses, the researchers come up with a new strategy to generate "squeezed light", a highly nonclassical state of a radiation field. The speed of light in a certain segment of space-time is deliberately changed with an intense pulse of the femtosecond laser.

This local modulation of the velocity of propagation "squeezes" the vacuum field, which is tantamount to a redistribution of vacuum fluctuations. Alfred Leitenstorfer compares this mechanism of quantum physics graphically with a traffic jam on the motorway: from a certain point on, some cars are going slower. As a result, traffic congestion sets in behind these cars, while the traffic density will decrease in front of that point. That means: when fluctuation amplitudes decrease in one place, they increase in another.

While the fluctuation amplitudes positively deviate from the vacuum noise at temporally increasing speed of light, a slowing down results in an astonishing phenomenon: the level of measured noise is lower than in the vacuum state - that is, the ground state of empty space.

The simple illustration with the traffic on a motorway, however, quickly reaches its limits: in contrast to this "classical physics" picture, where the number of cars remains constant, the noise amplitudes change completely differently with increasing acceleration and deceleration of space-time. In case of a moderate "squeezing", the noise pattern is distributed around the vacuum level fairly symmetrically.

With increasing intensity, however, the decrease inevitably saturates toward zero. The excess noise that is accumulated a few femtoseconds later, in contrast, increases non-linearly - a direct consequence of the Uncertainty Principle's character as an algebraic product. This phenomenon can be equated with the generation of a highly nonclassical state of the light field, in which, for example, always two photons emerge simultaneously in the same volume of space and time.

The experiment conducted in Konstanz raises numerous new questions and promises exciting studies to come. Next, the physicists aim at understanding the fundamental limits of their sensitive detection method which leaves the quantum state seemingly intact. In principle, every experimental analysis of a quantum system would ultimately perturb its state.

Currently, still a high number of individual measurements needs to be performed in order to obtain a result: 20 million repetitions per second. The physicists can not yet say with certainty whether it is a so-called "weak measurement" in conventional terms of quantum theory.

The new experimental approach to quantum electrodynamics is only the third method to study the quantum state of light. Now fundamental questions arise: What exactly is the quantum character of light? What actually is a photon? Concerning the last question, that much is clear to the Konstanz physicists: instead of a quantized packet of energy it is rather a measure for the local quantum statistics of electromagnetic fields in space-time.

Research paper: C. Riek, P. Sulzer, M. Seeger, A.S. Moskalenko, G. Burkard, D.V. Seletskiy, A. Leitenstorfer: "Subcycle Quantum Electrodynamics". Nature, Advance online publication. DOI: 10.1038/nature21024


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Konstanz
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Light source discovery 'challenges basic assumption' of physics
Strathclyde, UK (SPX) Jan 18, 2017
A widely-held understanding of electromagnetic radiation has been challenged in newly published research led at the University of Strathclyde. The study found that the normal direct correspondence between the bandwidths of the current source and emitted radiation can be broken. This was achieved by extracting narrowband radiation with high efficiency, without making the oscillation of the curren ... read more


TIME AND SPACE
Glass's off-kilter harmonies

ChemChina 'to file for anti-trust approval in US' for takeover

Breaking the optical bandwidth record of stable pulsed lasers

A toolkit for transformable materials

TIME AND SPACE
Northrop Grumman receives $140m BACN contract modification

Sharing battlefield information at multiple classification levels via mobile handheld devices

BAE Systems contracted for radio frequency countermeasure services

Harris secures $403 million tactical radio support contract

TIME AND SPACE
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

TIME AND SPACE
Oregon deploys DT Research Rugged Tablets for Construction Projects

China to offer global satellite navigation service by 2020

Austrian cows swap bells from 'hell' for GPS

Russia, China Making Progress in Synchronization of GLONASS, BeiDou Systems

TIME AND SPACE
Australia defends end of MH370 search, future hunt not ruled out

NASA research is key to future of air transportation

Taiwan begins F-16 upgrade program

Mystery remains as MH370 search called off

TIME AND SPACE
Apple antitrust suit: Qualcomm overcharged 'billions'

The speed limit for intra-chip communications in microprocessors of the future

China's largest chip company to build $30 billion semiconductor factory

Chip-sized, high-speed terahertz modulator raises possibility of faster data transmission

TIME AND SPACE
Study tracks 'memory' of soil moisture

SAGE III to Provide Highly Accurate Measurements of Atmospheric Gases

exactEarth reports initial launch for its second generation real-time constellation

Sentinel-2B launch preparations off to a flying start

TIME AND SPACE
Trump could enact sweeping changes to environment policy

China tells local meteorological bureaus to stop smog alerts

Researchers develop environmentally friendly soy air filter

Slovenian dogs sent 'crazy' by road salting mix-up









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.