Space Industry and Business News  
STELLAR CHEMISTRY
Tracking down the forces that shaped our solar system's evolution
by Staff Writers
Washington DC (SPX) Dec 28, 2021

A slice of a chondrite meteorite.

Meteorites are remnants of the building blocks that formed Earth and the other planets orbiting our Sun. Recent analysis of their isotopic makeup led by Carnegie's Nicole Nie and published in Science Advances settles a longstanding debate about the geochemical evolution of our Solar System and our home planet.

In their youth, stars are surrounded by a rotating disk of gas and dust. Over time, these materials aggregate to form larger bodies, including planets. Some of these objects are broken up due to collisions in space, the remnants of which sometimes hurtle through Earth's atmosphere as meteorites.

By studying a meteorite's chemistry and mineralogy, researchers like Nie and Carnegie's Anat Shahar can reveal details about the conditions these materials were exposed to during the Solar System's tumultuous early years. Of particular interest is why so-called moderately volatile elements are more depleted on Earth and in meteoritic samples than the average Solar System, represented by the Sun's composition. They are named because their relatively low boiling points mean they evaporate easily.

It's long been theorized that periods of heating and cooling resulted in the evaporation of volatiles from meteorites. Nie and her team showed that an entirely different phenomenon is the culprit in the case of the missing volatiles.

Solving the mystery involved studying a particularly primitive class of meteorites called carbonaceous chondrites that contain crystalline droplets, called chondrules, which were part of the original disk of materials surrounding the young Sun. Because of their ancient origins, these beads are an excellent laboratory for uncovering the Solar System's geochemical history.

"Understanding the conditions under which these volatile elements are stripped from the chondrules can help us work backward to learn the conditions they were exposed to in the Solar System's youth and all the years since," Nie explained.

She and her co-authors set out to probe the isotopic variability of potassium and rubidium, two moderately volatile elements. The research team included Shahar and colleagues from The University of Chicago, where Nie was a graduate student prior to joining Carnegie-Timo Hopp, Justin Y. Hu, Zhe J. Zhang, and Nicolas Dauphas-as well as Xin-Yang Chen and Fang-Zhen Teng from University of Washington Seattle.

Each element contains a unique number of protons, but its isotopes have varying numbers of neutrons. This means that each isotope has a slightly different mass than the others. As a result, chemical reactions discriminate between the isotopes, which, in turn, affects the proportion of that isotope in the reaction's end products.

"This means that the different kinds of chemical processing that the chondrules experienced will be evident in their isotopic composition, which is something we can probe using precision instruments," Nie added.

Their work enabled the researchers to settle the debate about how and when in their lifespans the chondrules lost their volatiles. The isotopic record unveiled by Nie and her team indicates that the volatiles were stripped as a result of massive shockwaves passing through the material circling the young Sun that likely drove melting of the dust to form the chondrules. These types of events can be generated by gravitational instability or by larger baby planets moving through the nebular gas.

"Our findings offer new information about our Solar System's youth and the events that shaped the geochemistry of the planets, including our own," Nie concluded.

"The revelation that shockwaves modified the material from which the planets were born has major implications for Earth science as well," added Carnegie Earth and Planets Laboratory Director Richard Carlson. "Once a planet gets as big as ours, its gravity is sufficient that losing most volatile elements becomes very difficult. Knowing that moderately volatile elements were stripped from the planetary building blocks themselves answers fundamental questions about Earth's geochemical evolution."

Research Report: "Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites"


Related Links
Carnegie Institution for Science
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
A gigantic lane made of raw material for new stars
Heidelberg, Germany (SPX) Dec 30, 2021
A group of astronomers, led by researchers from the Max Planck Institute for Astronomy (MPIA), have identified one of the longest known structures in the Milky Way. It stretches some 3900 light-years and consists almost entirely of atomic hydrogen gas. This filament, called "Maggie", could represent a link in the matter cycle of the stars. Analysing the measurements suggests that the atomic gas in this lane converges locally to form molecular hydrogen. When compressed in large clouds, this is the materi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Say hello to a record-setting isotope

RUAG technology helped launch Webb into space

Scientists invent lead-free composite shielding material for neutron and gamma-ray

With great space power comes great responsibility

STELLAR CHEMISTRY
SPAINSAT NG program successfully passes Critical Design Review

Honeywell, SES and Hughes demonstrate Multinetwork Airborne Connectivity

Airbus and OneWeb expand their partnership to connect European defence and security forces

SES Government Solutions releases new unified operational network

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Two new satellites mark further enlargement of Galileo

Galileo satellites given green light for launch

Brain and coat from RUAG Space for Galileo navigation satellites

Galileo pathfinder de-commissioned after 16 years of in-orbit service

STELLAR CHEMISTRY
NASA selects 4 university teams for aviation projects

Two killed in Israeli military helicopter crash: army

Discussing climate-neutral flight

Emirates upbeat on growth despite global surge in Covid

STELLAR CHEMISTRY
Fueling the future with new perovskite-related oxide-ion conductors

Semiconductors reach the quantum world

Researchers use electron microscope to turn nanotube into tiny transistor

Intel apologizes over letter addressing US sanctions on Xinjiang

STELLAR CHEMISTRY
China receives data from newly launched resource satellite

China launches new resource satellite

UK sets New Year's Day temperature record

China launches Tianhui 4 satellite into orbit

STELLAR CHEMISTRY
France bans plastic packaging for fruit and veg

Rio's low-key New Year generates 50% less trash

Philippines lifts ban on new open-pit mines

Ship captain's sentence for Mauritius oil spill commuted









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.