Space Industry and Business News  
TECH SPACE
Towards better metallic glasses
by Staff Writers
Bristol, UK (SPX) Nov 03, 2016


Sir Charles Frank and the icosahedron: five-fold symmetry suppresses crystallisation. Image courtesy University of Bristol, HH Wills Physics Laboratory.

Researchers from the University of Bristol have used state-of-the-art computer simulation to test a theory from the 1950s that when atoms organise themselves into 3D pentagons they supress crystallisation.

The theory by renowned Bristol physicist, Sir Charles Frank, has been a cornerstone of metallic glass development ever since from high-tech aerospace materials to the covers of our mobile phones.

But until now, the mechanism by which these 3D pentagons could stop the formation of crystal nuclei has been unknown. Metallic glasses have the potential to revolutionise many commercial applications - they have many of the advantageous properties of conventional metals but are much tougher and harder.

This is because the systems are disordered - the atoms are frozen into a complex, tangled structure.

This is unlike conventional metals which naturally form well-arranged ordered structures, called crystals.

The faults in crystals are what cause the material to break when it is stressed, and so metallic glasses can be far stronger - they have no faults between crystal grains.

Dr Patrick Royall from the School of Chemistry, who led this research with colleague Dr Jade Taffs, said: "In order to manufacture these amorphous materials we need to find a way to stop them from forming crystals.

"This is challenging - decades of research have resulted in a largest sample just 7cm in size. The key question - what is the most effective way of stopping crystallisation, remains unsolved."

Now, using computer simulation, Drs Taffs and Royall have uncovered the mechanism by which fivefold symmetry (3D pentagons) in liquids inhibits crystallisation.

Dr Taffs said: "When a crystal is in contact with its liquid, the atoms at the surface of each phase cannot satisfy their bonding constraints: they are "neither liquid nor solid".

"This means the material must pay energy due to the lack of satisfied bonds at the interface between crystal and liquid, and this surface energy is much higher in the case of liquids with fivefold symmetry."

Dr Royall added: "Liquids crystallise through the spontaneous creation of small crystals, and this process is extremely dependent on the size of the surface energy of the crystals.

"Because the surface energy is higher when the liquid has fivefold symmetry, nuclei form at a much lower rate. Identifying the mechanism by which crystallisation may be suppressed is an important step in the development of metallic glasses, and may open the door to using metallic glass in applications from vehicles to spacecraft."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Bristol
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Smashing metallic cubes toughens them up
Houston TX (SPX) Nov 03, 2016
Scientists at Rice University are smashing metallic micro-cubes to make them ultrastrong and tough by rearranging their nanostructures upon impact. The Rice team reported in Science this week that firing a tiny, nearly perfect cube of silver onto a hard target turns its single-crystal microstructure into a gradient-nano-grained (GNG) structure. The purpose of the experiment was to learn ho ... read more


TECH SPACE
Vector and ATLAS partner to introduce new satellite ground architecture offering

3-D-printed permanent magnets outperform conventional versions, conserve rare materials

Nickel-78 is a doubly magic isotope supercomputer confirms

Researchers bring eyewear-free 3-D capabilities to small screen

TECH SPACE
US Navy Satellite Begins Pre-Operational Testing After Rocky Ride Into Orbit

MUOS-5 Secure Communications Satellite Reaches Orbit, Begins Pre-Operational Testing

Comtech supplies troposcatter systems to Swedish military

U.S. Navy MUOS-5 satellite reaches orbit

TECH SPACE
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

TECH SPACE
Swarm reveals why satellites lose track

Satellites to spot drones and guide cyclists

No GPS, no problem: Next-generation navigation

Australia's coordinates out by more than 1.5 metres: scientist

TECH SPACE
Russia's UEC, China's SBW discuss joint gas turbine engine project

Boeing gets $478 million F-15 electronic warfare system contract

Space balloons inflating passenger flight hopes

'Morphing' wing offers new twist on plane flight and manufacturing

TECH SPACE
Special-purpose computer that may someday save us billions

Scientists develop a semiconductor nanocomposite material that moves in response to light

Researchers surprised at the unexpected hardness of gallium nitride

New technique for creating NV-doped nanodiamonds may be boost for quantum computing

TECH SPACE
Don't see ISRO's Bhuvan as competition: Google India

GRAPES-3 indicates a crack in Earth's magnetic shield

Japan launches advanced weather satellite Himawari-9

Study reveals how particles that seed clouds in the Amazon are produced

TECH SPACE
Delhi shuts schools as smog sparks health 'emergency'

Pakistan's Lahore chokes on toxic smog

One year on, Brazilian mine tragedy wounds still raw

UK govt loses High Court case on air pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.